整除分块(数论分块)

博客探讨了在算法中如何使用整除分块技术优化求解问题,特别是在处理求和问题时,如何利用整除分块的单调性和分块上下界的特性,将时间复杂度降低到O(n)。文章通过实例解释了分块的数量和上下界,并提供了相关的代码实现。
摘要由CSDN通过智能技术生成

整除分块

问题
  • ∑ i = 1 n ⌊ n i ⌋ \sum_{i=1}^n\lfloor\frac{n}{i}\rfloor i=1nin
  • 显然可以 O ( n ) O(n) O(n) 暴力求解,但大多数情况下题目数据范围并不支持这样做
单调性
  • 显然 ⌊ n i ⌋ \lfloor\frac{n}{i}\rfloor in 的取值只能是整数
  • 容易发现随着 i i i 的增大, ⌊ n i ⌋ \lfloor\frac{n}{i}\rfloor in 的值越来越小
分块
  • 我们可以先随便取一个 n n n 举例
  • 假设取 n = 8 n=8 n=8
i i i 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8
⌊ n i ⌋ \lfloor\frac{n}{i}\rfloor in 8 8 8 4 4 4 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
  • 可以发现相同的取值都是连续的,所以我们可以分段进行求解
分块数量
  • i ≤ n i\leq\sqrt{n} in 时, i i i 1 1 1 n \sqrt{n} n 之间的整数,所以 ⌊ n i ⌋ \lfloor\frac{n}{i}\rfloor in 最多只有 n \sqrt{n} n 个取值
  • i ≥ n i\geq\sqrt{n} in
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值