一、完全二叉树
完全二叉树是一种特殊的二叉树。从上到下,从左到右,每一层的节点都是满的,最下边一层所有的节点都是连续集中在最左边
二、堆
堆排序分为两种,分别是大顶堆和小顶堆。
大顶堆:在完全二叉树的基础上,每个结点的值都大于或等于其左右孩子结点的值
小顶堆:在完全二叉树的基础上,每个结点的值都小于或等于其左右孩子结点的值
三、堆排序的特点
堆排序是利用堆这种数据结构而设立的一种排序算法
我们可以看到以下的规律
N[i]的左节点:N[2i+1] N[i]的右节点:N[2i+2] N[i]的父节点:N[(i-1)/2)]
public static void main(String[] args) { int[] arr = new int[]{8,3,2,4,5,7,6,10,9}; // 获取数组当中每个数据的的左子树,右子树 for (int i = arr.length;i>=0;i--){ int left = 2 * i +1; //左子树 int right = 2 * i + 2; //右子树 if(left < arr.length){ System.out.println("所有的左子树"+arr[left]); } // if(right < arr.length){ // System.out.println("所有的右子树"+arr[right]); // } } }
基本思想
1):将带排序的序列构造成一个大顶堆,根据大顶堆的性质,当前堆的根节点(堆顶)就是序列中最大的元素
2):将堆顶元素和最后一个元素交换,然后将剩下的节点重新构造成一个大顶堆;
3):重复步骤2,如此反复,从第一次构建大顶堆开始,每一次构建,我们都能获得一个序列的最大值,然后把它放到大顶堆的尾部。最后,就得到一个有序的序列了
图示:
第一步:构建大顶堆(这里我们都是以最后一个开始讲解,不在是中间位置,讲解游标i的时候需要带上i的下边是一个大顶堆)
①:初始化状态,右下角为下标
②: index = 5开始,发现他没有兄弟节点,并且父节点小于它,父节点的计算放方式为:
index = [arr.length - 1] /2
③:接下来index减1,那么index节点变为4,这时候他要和兄弟节点进行对比,发现它比兄弟节和父节点都大
那么他就和父节点机型交换。
④:接下来index减2,他有和兄弟节点进行对比,发现它比兄弟节点大,还比父节点大,那么它和父节点进行交换
④:交换完成之后,发现2号节点不再大于其子节点了,所有需要在交换一次
//选取孩子结点的左孩子结点,继续向下筛选 parent = lChild; lChild = 2 * lChild + 1;
⑤:检查一下,已将满足最大的条件了,大顶堆已经构建完成
第二步:将堆顶元素和最后一个元素交换,然后将剩下的节点重新构造成一个大顶堆
①:0号节点是最大值,我们将它与最后一个节点交换位置
②:此时的堆不是大顶堆需要重现构建
③:再次调整,index = 1 ,此时 下标为1的值为5,值大于左右子树,所以 index -1 ,此时值为1.然后需要进行交换
交换完成之后,发现1号节点不再大于其子节点了,所有需要在交换一次
④:交换后的结果是
⑤:0号节点是最大值,我们将它与最后一个节点交换位置
⑥:此时的堆不是大顶堆需要重现构建,此时 index = 1,1号位置大于其孩子节点的值,所以 index -1 ,此时index = 0
0号位置小于其左子树。所以进行交换
⑦:交换后的结果是
⑧:0号节点是最大值,我们将它与最后一个节点交换位置
⑨:此时的堆不是大顶堆需要重现构建,此时 index = 0,0号位置小于其孩子节点的值,左右子树进行计较之后发现右子树更大,所以和右子树进行交换。
⑩:交换后的结果是
十一;0号节点是最大值,我们将它与最后一个节点交换位置
十二:此时的堆不是大顶堆需要重现构建,此时 index = 0,0号位置小于其孩子节点的值,左右子树进行计较之后发现做子树更大,所以和右子树进行交换。
十三:交换后的结果是
十四;0号节点是最大值,我们将它与最后一个节点交换位置
最终我们就能得到最后的答案
代码
public class HeapSort {
public static void main(String[] args) {
int[] arr = new int[]{5,70,13,80,30,1051,11};
for (int p = arr.length-1;p>=0;p--){
adjust(arr,p,arr.length);
}
//堆顶元素和堆底元素进行互换
for(int i = arr.length-1;i>=0;i--){
int temp = arr[0];
arr[0] = arr[i];
arr[i] = temp;
adjust(arr,0,i);
}
System.out.println(Arrays.toString(arr));
}
public static void adjust(int[] arr,int parent,int length) {
int Child = 2 * parent + 1;
while (Child<length){
int rChild = Child + 1;
if(rChild<length && arr[rChild]>arr[Child]){
Child++;
}
if(arr[parent] < arr[Child]){
int temp = arr[parent];
arr[parent] = arr[Child];
arr[Child] = temp;
parent = Child;
Child = 2 * Child + 1;
}else {
break;
}
}
}
}