java实现堆排序

一、完全二叉树

完全二叉树是一种特殊的二叉树。从上到下,从左到右,每一层的节点都是满的,最下边一层所有的节点都是连续集中在最左边

二、堆

堆排序分为两种,分别是大顶堆和小顶堆。

大顶堆:在完全二叉树的基础上,每个结点的值都大于或等于其左右孩子结点的值

小顶堆:在完全二叉树的基础上,每个结点的值都小于或等于其左右孩子结点的值

三、堆排序的特点

堆排序是利用堆这种数据结构而设立的一种排序算法

 

我们可以看到以下的规律

N[i]的左节点:N[2i+1] N[i]的右节点:N[2i+2] N[i]的父节点:N[(i-1)/2)]

public static void main(String[] args) { int[] arr = new int[]{8,3,2,4,5,7,6,10,9}; // 获取数组当中每个数据的的左子树,右子树 for (int i = arr.length;i>=0;i--){ int left = 2 * i +1; //左子树 int right = 2 * i + 2; //右子树 if(left < arr.length){ System.out.println("所有的左子树"+arr[left]); } // if(right < arr.length){ // System.out.println("所有的右子树"+arr[right]); // } } }

基本思想

1):将带排序的序列构造成一个大顶堆,根据大顶堆的性质,当前堆的根节点(堆顶)就是序列中最大的元素

2):将堆顶元素和最后一个元素交换,然后将剩下的节点重新构造成一个大顶堆;

3):重复步骤2,如此反复,从第一次构建大顶堆开始,每一次构建,我们都能获得一个序列的最大值,然后把它放到大顶堆的尾部。最后,就得到一个有序的序列了

图示:

第一步:构建大顶堆(这里我们都是以最后一个开始讲解,不在是中间位置,讲解游标i的时候需要带上i的下边是一个大顶堆)

①:初始化状态,右下角为下标

 ②: index = 5开始,发现他没有兄弟节点,并且父节点小于它,父节点的计算放方式为:

index = [arr.length - 1] /2

 

③:接下来index减1,那么index节点变为4,这时候他要和兄弟节点进行对比,发现它比兄弟节和父节点都大

那么他就和父节点机型交换。

 

④:接下来index减2,他有和兄弟节点进行对比,发现它比兄弟节点大,还比父节点大,那么它和父节点进行交换

 

④:交换完成之后,发现2号节点不再大于其子节点了,所有需要在交换一次

//选取孩子结点的左孩子结点,继续向下筛选 parent = lChild; lChild = 2 * lChild + 1;

⑤:检查一下,已将满足最大的条件了,大顶堆已经构建完成

第二步:将堆顶元素和最后一个元素交换,然后将剩下的节点重新构造成一个大顶堆

①:0号节点是最大值,我们将它与最后一个节点交换位置

②:此时的堆不是大顶堆需要重现构建

③:再次调整,index = 1 ,此时 下标为1的值为5,值大于左右子树,所以 index -1 ,此时值为1.然后需要进行交换

交换完成之后,发现1号节点不再大于其子节点了,所有需要在交换一次

④:交换后的结果是

⑤:0号节点是最大值,我们将它与最后一个节点交换位置

⑥:此时的堆不是大顶堆需要重现构建,此时 index = 1,1号位置大于其孩子节点的值,所以 index -1 ,此时index = 0

0号位置小于其左子树。所以进行交换

⑦:交换后的结果是

⑧:0号节点是最大值,我们将它与最后一个节点交换位置

⑨:此时的堆不是大顶堆需要重现构建,此时 index = 0,0号位置小于其孩子节点的值,左右子树进行计较之后发现右子树更大,所以和右子树进行交换。

⑩:交换后的结果是

十一;0号节点是最大值,我们将它与最后一个节点交换位置

十二:此时的堆不是大顶堆需要重现构建,此时 index = 0,0号位置小于其孩子节点的值,左右子树进行计较之后发现做子树更大,所以和右子树进行交换。

十三:交换后的结果是

十四;0号节点是最大值,我们将它与最后一个节点交换位置

最终我们就能得到最后的答案

代码

public class HeapSort {
    public static void main(String[] args) {
        int[] arr = new int[]{5,70,13,80,30,1051,11};
        for (int p = arr.length-1;p>=0;p--){
            adjust(arr,p,arr.length);
        }

        //堆顶元素和堆底元素进行互换
        for(int i = arr.length-1;i>=0;i--){
            int temp = arr[0];
            arr[0] = arr[i];
            arr[i] = temp;
            adjust(arr,0,i);
        }

        System.out.println(Arrays.toString(arr));

    }

    public static void adjust(int[] arr,int parent,int length) {
        int Child = 2 * parent + 1;
        while (Child<length){
            int rChild = Child + 1;
            if(rChild<length && arr[rChild]>arr[Child]){
                Child++;
            }
            if(arr[parent] < arr[Child]){
                int temp = arr[parent];
                arr[parent] = arr[Child];
                arr[Child] = temp;
                parent = Child;
                Child = 2 * Child + 1;
            }else {
                break;
            }
        }

    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值