日期:2024年4月22日 - 2024年4月28日
学习内容:
《深度学习入门 基于Python的理论实现》前四章
Python基础语法和Numpy库
学习情况:
1.《深度学习入门 基于Python的理论实现》前四章已完成,包括:
感知机的概念和简单实现逻辑
神经网络的基本概念和结构
激活函数和损失函数
梯度下降算法
2.Python基础语法和Numpy库已完成,包括:
Python的基本数据类型和操作
控制流语句
函数的定义和调用
列表、元组、字典和集合的使用
Numpy库的基本操作和函数
学习心得及所遇问题:
心得:
1.通过学习《深度学习入门 基于Python的理论实现》的前四章,我对神经网络的基本概念和结构有了更深入的了解。我学习了激活函数和损失函数的作用,以及梯度下降算法,这是一种常用的优化算法,用于更新神经网络的权重。
2.在学习Python基础语法和Numpy库的过程中,我学习了Python的基本数据类型和操作,以及如何使用控制流语句来控制程序的执行流程。此外,我还学习了函数的定义和调用,以及如何使用列表、元组、字典和集合来存储和处理数据。通过学习Numpy库,我学会了如何使用数组进行高效的数值计算,这对于深度学习非常重要,简化了大量计算。
遇到的问题:
1.环境配置问题:在学习深度学习过程中,我跟着视频教程搭建一个的开发环境,包括Python解释器、Numpy库以及其他可能用到的库。我遇到了一些库的版本兼容性问题,导致代码无法正常运行。最后通过查阅资料和尝试不同的解决方案,我最终解决了这些问题。
2.语法错误:在学习Python基础语法和Numpy库的过程中,我经常遇到语法错误。这些错误可能是由于拼写错误、缺少括号、语法结构不正确等原因造成的。通过仔细检查代码和使用Python的解释器进行调试,我能够找到并修复这些错误。
3.Numpy库中的函数较多以及深度学习入门第三、第四章节概念较多,在看教程时理解了,但之后又忘了,需要后续不断复习加强记忆。
下周计划:
学习《深度学习入门 基于Python的理论实现》全部学习完成
学习Python绘图—Matplotlib