动态规划-零钱兑换一、二

322.零钱兑换

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

动规五部曲

  1. dp[i]表示装满这个背包最少的物品;
  2. dp[i] = min(dp[i - coin(j)) + 1, dp[i]);
  3. 初始化,dp[0] = INT_MAX; 
  4. 遍历顺序,遍历顺序无论是先遍历物品还是背包都可以;

518.零钱兑换二

给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。

请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。

假设每一种面额的硬币有无限个。 

题目数据保证结果符合 32 位带符号整数。

示例 1:

输入:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

动规五部曲:完全背包,每个物品可以使用无限次

  1. dp[i]数组的含义:装满这个背包有多少种含义;
  2. dp[i] += dp[i - coin[j]]总和数 与“目标和”那一道题一致;
  3. dp[0] = 0;
  4. 遍历顺序,纯完全背包遍历顺序无所谓;而这一道题有组合顺序要求;那么先遍历物品再遍历背包,那么就是组合数。
class Solution:
    def change(self, amount: int, coins: List[int]) -> int:
        dp = [0 for i in range(amount + 1)]
        dp[0] = 1
        for i in range(len(coins)):
            for j in range(amount + 1):
                if j - coins[i] >= 0:
                    dp[j] += dp[j - coins[i]]
        print(dp)
        return(dp[-1])
                

类似的题目494.目标和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值