322.零钱兑换
给你一个整数数组
coins
,表示不同面额的硬币;以及一个整数amount
,表示总金额。计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回
-1
。你可以认为每种硬币的数量是无限的。
动规五部曲
- dp[i]表示装满这个背包最少的物品;
- dp[i] = min(dp[i - coin(j)) + 1, dp[i]);
- 初始化,dp[0] = INT_MAX;
- 遍历顺序,遍历顺序无论是先遍历物品还是背包都可以;
518.零钱兑换二
给你一个整数数组
coins
表示不同面额的硬币,另给一个整数amount
表示总金额。请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回
0
。假设每一种面额的硬币有无限个。
题目数据保证结果符合 32 位带符号整数。
示例 1:
输入:amount = 5, coins = [1, 2, 5] 输出:4 解释:有四种方式可以凑成总金额: 5=5 5=2+2+1 5=2+1+1+1 5=1+1+1+1+1
动规五部曲:完全背包,每个物品可以使用无限次
- dp[i]数组的含义:装满这个背包有多少种含义;
- dp[i] += dp[i - coin[j]]总和数 与“目标和”那一道题一致;
- dp[0] = 0;
- 遍历顺序,纯完全背包遍历顺序无所谓;而这一道题有组合顺序要求;那么先遍历物品再遍历背包,那么就是组合数。
class Solution:
def change(self, amount: int, coins: List[int]) -> int:
dp = [0 for i in range(amount + 1)]
dp[0] = 1
for i in range(len(coins)):
for j in range(amount + 1):
if j - coins[i] >= 0:
dp[j] += dp[j - coins[i]]
print(dp)
return(dp[-1])
类似的题目494.目标和