2021年第十二届蓝桥杯省赛B组Java题解
说明:
2021年蓝桥杯省赛Java B组延续了“暴力杯”的特点,题目难度分层明显,前几题为简单模拟题,后几题涉及动态规划、数学建模和复杂算法设计。从考察内容来看,字符串处理、数论、排列组合、日期计算是重点,对代码实现效率和逻辑严谨性要求较高。本文提供A~J题的核心解法与优化代码,帮助大家快速掌握解题思路。
试题A:ASC(5分)
问题描述
求大写字母L的ASCII码值。
题解
直接通过Java类型转换实现:
public class Main {
public static void main(String[] args) {
System.out.println((int)'L'); // 输出76
}
}
优化点:代码简洁,无需额外计算。
试题B:卡片(5分)
问题描述
用数字0-9的卡片各2021张拼数字,求能拼到的最大连续整数。
题解
通过哈希表统计卡片消耗:
public class Main {
public static void main(String[] args) {
int[] cards = new int[10];
Arrays.fill(cards, 2021);
int num = 1;
while (true) {
int tmp = num;
while (tmp > 0) {
int digit = tmp % 10;
if (cards[digit] == 0) {
System.out.println(num - 1); // 输出3181
return;
}
cards[digit]--;
tmp /= 10;
}
num++;
}
}
}
注释:逐位拆解数字并检查卡片余量,时间复杂度为O(n)。
试题C:直线(10分)
问题描述
计算20×21网格点能确定的不同直线数量。
题解
用分数化简避免浮点误差:
public class Main {
static class Line {
String k, b; // 斜率k=a/b,截距b=c/d
public Line(String k, String b) {
this.k = k;
this.b = b;
}
@Override
public boolean equals(Object obj) {
Line line = (Line) obj;
return k.equals(line.k) && b.equals(line.b);
}
@Override
public int hashCode() {
return k.hashCode() + b.hashCode();
}
}
static int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
public static void main(String[] args) {
Set<Line> lines = new HashSet<>();
List<int[]> points = new ArrayList<>();
for (int x = 0; x < 20; x++) {
for (int y = 0; y < 21; y++) {
points.add(new int[]{x, y});
}
}
for (int i = 0; i < points.size(); i++) {
int[] p1 = points.get(i);
for (int j = i + 1; j < points.size(); j++) {
int[] p2 = points.get(j);
int dx = p1[0] - p2[0], dy = p1[1] - p2[1];
if (dx == 0) { // 垂直线
lines.add(new Line("INF", String.valueOf(p1[0])));
continue;
}
// 斜率化简
int g1 = gcd(dy, dx);
String k = (dy/g1) + "/" + (dx/g1);
// 截距化简:(y1x2 - y2x1)/(x2 - x1)
int numerator = p1[1] * dx - dy * p1[0];
int denominator = dx;
int g2 = gcd(numerator, denominator);
String b = (numerator/g2) + "/" + (denominator/g2);
lines.add(new Line(k, b));
}
}
System.out.println(lines.size()); // 输出40257
}
}
优化点:通过分数形式避免精度丢失,HashSet去重效率更高。
试题D:货物摆放(10分)
问题描述
求n=2021041820210418的因数三元组(a,b,c)满足a×b×c=n的数量。
题解
因数分解+排列组合:
public class Main {
public static void main(String[] args) {
long n = 2021041820210418L;
List<Long> factors = new ArrayList<>();
for (long i = 1; i <= Math.sqrt(n); i++) {
if (n % i == 0) {
factors.add(i);
if (i != n / i) factors.add(n / i);
}
}
int count = 0;
for (Long a : factors) {
for (Long b : factors) {
if (a * b > n) continue;
if (n % (a * b) == 0) count++;
}
}
System.out.println(count); // 输出2430
}
}
注释:先获取所有因数,再遍历三元组,时间复杂度O(m²),m为因数个数。
试题E:路径(15分)
问题描述
求1到2021节点的最短路径,边权为两节点编号的最小公倍数。
题解
Dijkstra算法+堆优化:
public class Main {
static final int N = 2022;
static List<int[]>[] graph = new ArrayList[N];
static int[] dist = new int[N];
public static void main(String[] args) {
for (int i = 1; i < N; i++) {
graph[i] = new ArrayList<>();
for (int j = i + 1; j <= Math.min(i + 21, N - 1); j++) {
int w = lcm(i, j);
graph[i].add(new int[]{j, w});
}
}
Arrays.fill(dist, Integer.MAX_VALUE);
dist[1] = 0;
PriorityQueue<int[]> heap = new PriorityQueue<>((a, b) -> a[1] - b[1]);
heap.offer(new int[]{1, 0});
while (!heap.isEmpty()) {
int[] cur = heap.poll();
int u = cur[0];
if (u == 2021) break;
for (int[] edge : graph[u]) {
int v = edge[0], w = edge[1];
if (dist[v] > dist[u] + w) {
dist[v] = dist[u] + w;
heap.offer(new int[]{v, dist[v]});
}
}
}
System.out.println(dist[2021]); // 输出10266837
}
static int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); }
static int lcm(int a, int b) { return a * b / gcd(a, b); }
}
优化点:使用优先队列优化,时间复杂度O(E logV)。
试题F:时间显示(15分)
问题描述
将毫秒数转换为HH:MM:SS格式。
题解
时间单位转换:
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
long ms = sc.nextLong();
ms %= 86400000; // 去除整天
long h = ms / 3600000;
ms %= 3600000;
long m = ms / 60000;
ms %= 60000;
long s = ms / 1000;
System.out.printf("%02d:%02d:%02d", h, m, s);
}
}
注释:逐级取模计算时分秒,注意格式化输出。
本届省赛题目呈现以下特点:
- 基础题占比高:前3题均考察基础语法和逻辑;
- 算法分层明显:后3题需要掌握Dijkstra、数论等进阶知识;
- 细节易错点多:如直线题中的精度问题、路径题中的LCM计算。
备赛建议:
- 熟练掌握Java集合、日期API等工具类;
- 强化动态规划和图论算法;
- 注重代码调试能力,避免因边界条件失分。