自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 收藏
  • 关注

原创 SpringBoot项目通过smbj读取Windows系统设备共享文件夹

本文介绍了使用SMBJ库在SpringBoot项目中读取Windows共享文件夹的方法。通过引入smbj依赖(0.11.5版本),实现了连接共享服务器、认证访问、列出文件目录和读取文件内容的功能。示例代码展示了如何连接到指定IP的共享文件夹,遍历并排序文件列表(按最后修改时间倒序),然后读取第一个文本文件内容(使用GBK编码)。程序包含空用户名/密码的认证方式,并处理了文件路径拼接、文件属性过滤等细节,最后通过try-with-resources确保资源正确释放。该方案适用于需要访问Windows共享文件的

2025-08-27 15:34:01 222

原创 Stream流的常用方法大全

本文总结了Java Stream流的11种常用操作方法:1) forEach遍历;2) filter多条件过滤;3) distinct去重;4) limit截取前n个;5) skip跳过前n个;6) sorted排序;7) max/min求最值;8) reduce求和;9) List转Map;10) map方法转换对象类型;11) groupingBy分组。示例代码展示了如何对字符串和自定义User对象进行过滤、排序、统计和转换等操作,包括年龄总和、工资计算、分组聚合等实用功能。这些方法覆盖了Stream流

2025-08-27 14:04:44 357

原创 docker服务器安装应用

本文介绍了Docker环境下常用中间件的安装配置方法,包括MySQL、Redis、MongoDB、ELK、Zookeeper和Kafka的部署步骤。主要内容涵盖:1)Docker配置修改;2)各中间件镜像拉取命令;3)容器创建及运行参数设置;4)关键配置如字符集、认证、端口映射等注意事项;5)部分中间件的用户管理操作。文中提供了详细的命令范例,特别说明了MongoDB内存限制问题,并给出了ELK环境下Kibana与Elasticsearch的连接配置方法。

2025-08-27 13:47:03 213

原创 Drools规则引擎

本文介绍了基于Drools规则引擎的订单积分系统实现。系统通过pom.xml配置Drools相关依赖,包括drools-core、drools-compiler等组件。在resources/rules/order.drl文件中定义了4条积分规则,根据不同订单金额范围设置不同积分值。通过DroolsConfig配置类创建KieContainer来加载规则文件,并提供了动态生成规则文件的KieContainerUtils工具类,支持运行时修改规则内容(如将1000元以上订单积分从1000分调整为2000分)。该

2025-08-15 15:12:22 214

原创 L3-3 AI Agent 核心认知框架

本文介绍了AI Agent的几种关键决策框架及应用实践。首先,React方法通过结合推理与行动来增强决策能力;Plan-and-Execute框架采用先规划后执行的策略,适用于复杂项目管理;Self-Ask框架通过自问自答提升问题理解深度;Thinking and Self-Reflection框架则通过自我评估优化决策过程。最后展示了命理机器人开发中的工具模块实现,包括日志配置、嵌入模型获取等功能模块。这些框架和工具为构建高效AI系统提供了实用解决方案。

2025-08-11 08:55:58 389

原创 L3-2 Function Calling

摘要:Function Calling技术解析与实践 Function Calling技术使大语言模型能够调用外部函数,突破了仅依赖内部知识的局限。其实施流程包括:1)构建功能函数(如计算年龄总和);2)通过tools参数传递函数描述;3)模型识别并调用合适函数;4)处理函数返回结果。完整实践包含数据准备、函数定义、API调用和结果解析四个环节,通过JSON Schema描述函数参数和返回值。该技术显著扩展了模型能力,使其能执行复杂计算任务并返回结构化结果。

2025-08-11 08:54:40 385

原创 L3-1 AI Agent 生态认知革命

AI Agent:智能体技术与应用解析 核心概念 AI Agent(智能体)是具备感知、决策与行动能力的自治系统,能够通过传感器感知环境并作出响应。其核心特征包括代理性、自主性、智能性和社会性。大模型时代下,AI Agent扩展了LLM的能力,通过记忆、工具和规划模块实现复杂任务处理。 技术架构 智能体系统遵循感知-规划-行动-观察的循环机制,运用思维链(COT)、反思改进(ReAct)等方法提升决策质量。主流开发框架如LangChain、AutoGen等提供模块化设计,支持单/多代理模式,集成工具链与记忆

2025-08-11 08:50:39 623

原创 L2-6 通用文档智能问答系统商业化实战

本文摘要介绍了基于LangChain的文档智能问答系统实现方案,包含三个核心模块:1) logger.py提供日志管理功能,支持控制台和文件输出;2) models.py封装大模型接口,包含阿里通义千问API的Chat、Embedding和Rerank模型调用;3) combine_client.py实现问答链构建,支持知识库检索和历史对话管理,通过Prompt模板控制问答行为。系统采用模块化设计,支持参数化配置模型参数(如temperature、max_tokens),并集成了完善的日志记录机制,为商业化

2025-08-11 08:36:25 345

原创 L2-5 RAG开源项目综合应用

摘要:本文介绍了RAGFlow和FastGPT两款企业级知识库问答系统的构建工具。RAGFlow是一个开源的RAG引擎,提供可视化平台简化文档解析、索引构建和问答应用开发流程,特别适合快速搭建企业内部知识库系统。文章详细讲解了Windows环境下Docker安装配置步骤,包括WSL2设置和镜像源配置,并演示了RAGFlow的安装使用。同时介绍了FastGPT的部署方法,展示了如何结合网页爬取技术构建实时问答系统。两款工具都显著降低了企业级RAG系统的开发门槛,适用于处理多格式文档和特定领域知识问答场景。

2025-07-20 09:43:53 581

原创 L2-4 掌握RAG应用评估技能和工具

本文介绍了RAG(检索增强生成)应用的评估方法、指标及工具。评估RAG应用需考虑大模型输出的不确定性、知识库动态变化等因素,主要采用人工评估和自动化评估两种方法。评估依据包括输入问题、生成答案、上下文和参考答案,常见指标涵盖上下文相关性、精度、召回率、忠实度和答案相关性。评估类型分为检索评估和响应评估,分别关注上下文匹配度和生成质量。常用评估工具包括Ragas和Trulens,前者提供综合性评测框架,后者专注于评估改进。这些评估体系有助于确保RAG应用的性能和可靠性。

2025-07-15 23:23:49 488

原创 L2-3 基于LangChain的RAG系统优化实践

文章摘要 本文分析了RAG(检索增强生成)技术的商业化痛点及优化方案。RAG流程中的两大核心环节——索引构建(Index Process)和查询处理(Query Process)存在多个问题,如内容缺失、检索效率低、文档切分粒度不匹配、答案格式错误等。针对这些问题,提出了数据清洗、分块优化、提示词设计、重排技术等解决方案。此外,还介绍了Advanced RAG技术,通过预检索优化、检索优化和后检索优化三个阶段提升检索效果。文中还提供了模型配置代码示例,展示了如何通过LangChain调用不同平台的大模型。

2025-07-13 10:16:58 469

原创 L2-2 LangChainV0.3从入门到精通

LangChain是一个用于开发大语言模型(LLM)应用程序的开源框架,其核心价值在于将LLM能力与实际应用需求连接起来。框架提供标准化工具链,支持与200多种外部系统集成,重塑了AI开发范式。 LangChain体系包含核心库和扩展组件:langchain-core提供基础抽象;langchain-community支持第三方集成;LangGraph用于构建状态化应用;LangServe部署API服务;LangSmith提供开发运维平台。核心功能模块包括模型交互、数据连接、任务编排链、状态记忆、智能代理等

2025-06-15 09:07:36 644

原创 L2-1 RAG认知与项目实践

摘要 RAG(检索增强生成)技术通过结合检索外部知识和大语言模型生成能力,解决了大模型在时效性和专业知识覆盖方面的局限。其流程包括文档分块(按字符数、滑动窗口或句子切分)、向量化存储(使用嵌入模型将文本转为数值向量),最后通过检索增强提示词生成答案。FastGPT等工具简化了RAG应用开发。研究范式从Naive RAG演进至Advanced和Modular RAG,而本地部署工具如Ollama支持离线运行向量模型。该技术显著提升了模型在特定领域任务中的表现。

2025-05-28 08:48:25 1438

原创 L1-2 提示工程特训和实战

这篇文章介绍了提示词工程的关键知识点和Prompt调优技巧。主要包含以下内容: 提示词基础概念:解释了提示词(Prompt)和提示词工程的定义,介绍了通用模型和专业化的Prompt 5层结构模型。 Prompt调优技巧: 零样本提示(Zero-Shot):不提供示例直接完成任务 少样本提示(Few-Shot):提供少量示例引导模型 链式思考(COT):通过"逐步思考"引导模型推理 自我一致性(Self-Consistency):生成多条推理路径选出最一致答案 每个技巧都配有实际案例和Py

2025-05-25 11:33:24 768

原创 L1-3 通俗易懂大模型的核心原理

ChatGPT背后的GPT模型基于Transformer架构,具备生成式、预训练和深度学习框架的特点。Transformer架构通过并行计算、自注意力机制等优势,能够高效处理长序列数据,广泛应用于自然语言处理任务。模型训练涉及监督学习、无监督学习、强化学习和自监督学习等多种方法,其中自监督学习通过数据自身的规律进行学习,减少对人工标注的依赖。Transformer的工作原理包括Token化、词向量处理、编码器与解码器的注意力机制,最终生成连贯的文本内容。

2025-05-11 16:44:30 1570

原创 Python基础

【代码】Python基础。

2025-05-04 12:21:07 286

原创 L1-1 大语言模型的基础认知

AIGC的快速发展(如大语言模型)为AGI提供了部分技术积累(如自然语言处理能力),但AGI需突破认知、推理等更高层能力。通用人工智能,简称AGI(Artificial General Intelligence),指的是一种智能,能够理解、学习和应用知识和技能,需要能够处理极其广泛的问题和环境,具有很高的适应性、自主性和创造性。这是人类的终极目标,目前还没有达到!大模型特点:1.数据量大 2.规模大 3.算力大 4.参数量大 5.具备强大泛化能力的预训练模型(举一反三的能力)为什么是大模型兴起?

2025-04-27 08:08:52 601

原创 Optional

Optional 在Java 8中引入,目的是解决 NullPointerException 的问题。这是一个可以为 null 的容器

2024-12-24 16:13:04 1750

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除