自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 收藏
  • 关注

原创 2021-03-31

标题聚类中常用评价标准评价标准的介绍:ACCAMIARI轮廓系数一、ACC准确度用来计算聚类预测的准确性 acc= 预测个数/整个样本的个数n:数据的个数lil_ili​: i的原始类别rir_iri​: i预测的聚类标签map(rir_iri​): 为预测标签到原始类别的映射δ\deltaδ(x,y): δ(x,y)定义了一个delta函数,当x = y时等于1,否则等于0。n:数据集的个数由于我在python中没有直接找到计算ACC的函数,一下附上自己写的

2021-03-31 21:46:49 328

原创 2021-03-31

python的归一化方法归一化主要用于消除属性之间数据大小的差距下面附上python的归一化代码import numpy as np# 归一化def normalization(d): d = d.astype(float) a,b = np.shape(d) min = d.min(0) cha = d.max(0)-min for i in np.arange(a): for j in np.arange(b):

2021-03-31 19:51:38 85

原创 k-means算法实现(完全自己动手)

1 k-means算法1.1 k-means算法的原理通过迭代不断的划分簇和更新聚类中心,直到每个点与其聚类中心的距离之和最小,停止迭代。要预先知道聚类簇的个数K,和初始化聚类中心C。聚类簇的个数一般已知。而初始化聚类中心的值是随机初始化的。其中点集合:X=[x1,x2,.....,xn]T,xi=[xi1,xi2,....,xim],i∈[i,n]X=[x_1,x_2,.....,x_n]^T, x_i=[x_{i1},x_{i2},....,x_{im}],i\in[i,n]X=[x1​,x2​

2020-12-27 17:34:55 2403 3

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除