机器学习八股文(1)

来源:Deep-Learning-Interview-Book/docs/机器学习.md at master · amusi/Deep-Learning-Interview-Book · GitHub

部分答案为整理所得,仅供参考~

逻辑回归/对数几率回归(LR)

知识点:

  1. 二分类算法,面对一个回归或者分类问题,建立损失函数,通过优化方法迭代求解最优的模型参数,然后测试验证所求模型的好坏。
  2. 逻辑回归的本质:极大似然估计
  3. 激活函数:Sigmoid(z)=\frac{1}{1+e^{-z}},为什么用sigmoid函数?广义模型推到所得;满足统计的最大熵模型;性质优秀,方便使用(sigmoid函数是平滑的,任意阶可导,一阶二阶导数可以直接有函数值得到不用进行求导)
  4. 损失函数:交叉熵,为什么不用均方误差损失?均方误差是一个凸函数,有很多局部最优点,交叉熵曲线光滑,有一个全局最优点

LR可以用核函数吗?

LR能否解决非线性分类问题?

https://www.zhihu.com/question/29385169

可以,需要自己定义一个非线性映射

LR为什么要离散特征?

逻辑回归LR的特征为什么要先离散化_lr特征处理-CSDN博客

计算简单,稀疏向量内积乘法运算速度快,计算结果方便存储,容易扩展;

离散化后的特征对异常数据有很强的鲁棒性;

逻辑回归属于广义线性模型,表达能力受限,将单个变量离散化为N个后,每个变量具有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合;

离散化后可以进行特征交叉,由M+N个变量变为M*N个变量,进一步引入非线性,提升表达能力;

特征离散化后,模型更稳定。

逻辑回归是处理线性问题还是非线性问题的?

主要解决线性问题,若要解决非线性问题需要自己定义一个非线性映射。

线性回归与逻辑回归(LR)的区别

https://blog.csdn.net/ddydavie/article/details/82668141

线性回归模型中输出一般是连续的,对于每个输入x都有对应的输出y,因此模型的定义域和值域都可以是无穷的。逻辑回归输入可以是连续的,输出一般是离散的,通常只有{0,1}两个值。逻辑回归主要用于二分类问题,损失函数是交叉熵损失函数,线性回归主要用于多分类问题,损失函数是均方误差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值