来源:Deep-Learning-Interview-Book/docs/机器学习.md at master · amusi/Deep-Learning-Interview-Book · GitHub
部分答案为整理所得,仅供参考~
逻辑回归/对数几率回归(LR)
知识点:
- 二分类算法,面对一个回归或者分类问题,建立损失函数,通过优化方法迭代求解最优的模型参数,然后测试验证所求模型的好坏。
- 逻辑回归的本质:极大似然估计
- 激活函数:Sigmoid(z)=,为什么用sigmoid函数?广义模型推到所得;满足统计的最大熵模型;性质优秀,方便使用(sigmoid函数是平滑的,任意阶可导,一阶二阶导数可以直接有函数值得到不用进行求导)
- 损失函数:交叉熵,为什么不用均方误差损失?均方误差是一个凸函数,有很多局部最优点,交叉熵曲线光滑,有一个全局最优点
LR可以用核函数吗?
LR能否解决非线性分类问题?
https://www.zhihu.com/question/29385169
可以,需要自己定义一个非线性映射
LR为什么要离散特征?
逻辑回归LR的特征为什么要先离散化_lr特征处理-CSDN博客
计算简单,稀疏向量内积乘法运算速度快,计算结果方便存储,容易扩展;
离散化后的特征对异常数据有很强的鲁棒性;
逻辑回归属于广义线性模型,表达能力受限,将单个变量离散化为N个后,每个变量具有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合;
离散化后可以进行特征交叉,由M+N个变量变为M*N个变量,进一步引入非线性,提升表达能力;
特征离散化后,模型更稳定。
逻辑回归是处理线性问题还是非线性问题的?
主要解决线性问题,若要解决非线性问题需要自己定义一个非线性映射。
线性回归与逻辑回归(LR)的区别
https://blog.csdn.net/ddydavie/article/details/82668141
线性回归模型中输出一般是连续的,对于每个输入x都有对应的输出y,因此模型的定义域和值域都可以是无穷的。逻辑回归输入可以是连续的,输出一般是离散的,通常只有{0,1}两个值。逻辑回归主要用于二分类问题,损失函数是交叉熵损失函数,线性回归主要用于多分类问题,损失函数是均方误差。