机器学习八股文(1)

来源:Deep-Learning-Interview-Book/docs/机器学习.md at master · amusi/Deep-Learning-Interview-Book · GitHub

部分答案为整理所得,仅供参考~

逻辑回归/对数几率回归(LR)

知识点:

  1. 二分类算法,面对一个回归或者分类问题,建立损失函数,通过优化方法迭代求解最优的模型参数,然后测试验证所求模型的好坏。
  2. 逻辑回归的本质:极大似然估计
  3. 激活函数:Sigmoid(z)=\frac{1}{1+e^{-z}},为什么用sigmoid函数?广义模型推到所得;满足统计的最大熵模型;性质优秀,方便使用(sigmoid函数是平滑的,任意阶可导,一阶二阶导数可以直接有函数值得到不用进行求导)
  4. 损失函数:交叉熵,为什么不用均方误差损失?均方误差是一个凸函数,有很多局部最优点,交叉熵曲线光滑,有一个全局最
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值