来源:Deep-Learning-Interview-Book/docs/机器学习.md at master · amusi/Deep-Learning-Interview-Book · GitHub
部分答案为整理所得,仅供参考~
逻辑回归/对数几率回归(LR)
知识点:
- 二分类算法,面对一个回归或者分类问题,建立损失函数,通过优化方法迭代求解最优的模型参数,然后测试验证所求模型的好坏。
- 逻辑回归的本质:极大似然估计
- 激活函数:Sigmoid(z)=
,为什么用sigmoid函数?广义模型推到所得;满足统计的最大熵模型;性质优秀,方便使用(sigmoid函数是平滑的,任意阶可导,一阶二阶导数可以直接有函数值得到不用进行求导)
- 损失函数:交叉熵,为什么不用均方误差损失?均方误差是一个凸函数,有很多局部最优点,交叉熵曲线光滑,有一个全局最