拉格朗日对偶性

拉格朗日对偶性是解决约束优化问题的有效工具,它将原始问题转换为对偶问题,简化了求解过程。通过对广义拉格朗日函数的极大极小化,我们可以找到原始问题的最优解。这种方法在最大熵模型和支持向量机等实际问题中有着广泛应用。
摘要由CSDN通过智能技术生成

拉格朗日对偶性

在解决最优化问题时,我们常常会用到拉格朗日对偶性将原始问题转换成对偶问题进行求解(这样我们就将约束最优化问题转换为无约束的最优化问题).例如最大熵模型,支持向量机.

原始问题如下:

在这里插入图片描述

假设f(x),c(x),h(x)均为实空间上的连续可微函数.

我们引入广义拉格朗日函数

在这里插入图片描述

看到这里,我们惊喜的发现高数做题做到吐的方法吗?

我们假设P表示原始问题:

在这里插入图片描述

我们得到一个关于x的方程.

那么我们可以轻松的看出,当存在某个 x ,如果 x 满足约束条件,则在这里插入图片描述
,若x不满足约束条件(不满足c(x),h(x)中的任意一个)我们都将得到在这里插入图片描述
,也就是说:

在这里插入图片描述

因此,如果我们考虑极小值问题,那么:

在这里插入图片描述

这样我们就将原始最优化问题,转化为广义拉格朗日函数的极大极小问题.

对偶问题

我们将上述原始问题的最优解记为:

在这里插入图片描述

定义:

在这里插入图片描述

这样等式右边成为广义拉格朗日函数的极大极小值。

这样我们就得到原始问题的对偶问题:

在这里插入图片描述

为方便表示,定义对偶问题的最优解为:

在这里插入图片描述

这样,

在这里插入图片描述

这样就可以通过求解对偶问题的最优解来求解原始问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值