数据结构实验五

7-1 还原二叉树 (25 分)

给定一棵二叉树的先序遍历序列和中序遍历序列,要求计算该二叉树的高度。

输入格式:

输入首先给出正整数N(≤50),为树中结点总数。下面两行先后给出先序和中序遍历序列,均是长度为N的不包含重复英文字母(区别大小写)的字符串。

输出格式:

输出为一个整数,即该二叉树的高度。

#include<bits/stdc++.h>
using namespace std;

int height(char a[],char b[],int n)
{
    int i;
    if(n==0)return 0;
    for(i=0;i<n;i++)
    {
        if(b[i]==a[0])
        {
            break;
        }
    }
    int x=height(a+1,b,i)+1;//求左子树的深度
    int y=height(a+i+1,b+i+1,n-i-1)+1;//求右子树的深度
    return x>y?x:y;
}
int main()
{
    char a[101];
    char b[101];
    int n;
    cin>>n;
    cin>>a>>b;
    int cnt=height(a,b,n);
    cout<<cnt<<endl;
}

7-6 交换二叉树中每个结点的左孩子和右孩子 (20 分)

以二叉链表作为二叉树的存储结构,交换二叉树中每个结点的左孩子和右孩子。

输入格式:

输入二叉树的先序序列。

提示:一棵二叉树的先序序列是一个字符串,若字符是‘#’,表示该二叉树是空树,否则该字符是相应结点的数据元素。

输出格式:

输出有两行:

第一行是原二叉树的中序遍历序列;

第二行是交换后的二叉树的中序遍历序列。

 #include<bits/stdc++.h>
 using namespace std;
 struct node
 {
        char data;
        struct node *l,*r;
 };
 //建立链表结构树的函数
 struct node *sett()
 {
         struct node *p;//建立结构类型的指针结点p
         p=new node;
         char ch;//先序输入建立树
         cin>>ch;
         if(ch=='#')
                 p=NULL;
        else
        {
                p->data=ch;
                p->l=sett();
                p->r=sett();
        }
         return p;
 };
 //遍历输出交换前的:用左根右(递归本函数)
 void show(struct node *p)
 {
         if(p==NULL)
                return;
         show(p->l);
         cout<<p->data;
         show(p->r);
 }
 //遍历输出交换后的:右根左(递归本函数)
 void showw(struct node *p)
 {
         if(p==NULL)
         return;
         showw(p->r);
         cout<<p->data;
         showw(p->l);
 }

 int main()
 {
         struct node *treee;
         treee=sett();
         show(treee);
        cout<<endl;//换行
         showw(treee);
 }

7-8 建立与遍历二叉树 (25 分)

以字符串的形式定义一棵二叉树的先序序列,若字符是‘#’, 表示该二叉树是空树,否则该字符是相应结点的数据元素。读入相应先序序列,建立二叉链式存储结构的二叉树,然后中序遍历该二叉树并输出结点数据。

输入格式:

字符串形式的先序序列(即结点的数据类型为单个字符)

输出格式:

中序遍历结果

#include<bits/stdc++.h>
using namespace std;
struct node 
{
        char data;
        struct node *l,*r;
};

struct node *sett()
{
        struct node *p;
        p=new node;
        char ch;
        cin>>ch;
        if(ch=='#')
                p=NULL;
        else
        {
                p->data=ch;
                p->l=sett();
                p->r=sett();
        }
        return p;
};

void show(struct node *p)
{
        if(p==NULL)
                return;
        show(p->l);
        cout<<p->data;
        show(p->r);
}

int main()
{
        struct node *p;
        p=sett();
        show(p);
}

7-9 完全二叉树的层序遍历 (25 分)

一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是完美二叉树。对于深度为 D 的,有 N 个结点的二叉树,若其结点对应于相同深度完美二叉树的层序遍历的前 N 个结点,这样的树就是完全二叉树

给定一棵完全二叉树的后序遍历,请你给出这棵树的层序遍历结果。

输入格式:

输入在第一行中给出正整数 N(≤30),即树中结点个数。第二行给出后序遍历序列,为 N 个不超过 100 的正整数。同一行中所有数字都以空格分隔。

输出格式:

在一行中输出该树的层序遍历序列。所有数字都以 1 个空格分隔,行首尾不得有多余空格。

#include<bits/stdc++.h>
using namespace std;
int t[35];
int m,n;
struct node
{
        char data;
        struct node*l,*r;
};

void sett(int i)
{
        if(i>n)//如果要建立的第i结点大于n总结点数
                return;
        sett(2*i);//建立左孩子
        sett(2*i+1);//建立右孩子
        cin>>t[i];
}//给定的树为后序
int main()
{
        cin>>n;
        sett(1);//从第一个结点开始建立,递归
        for(int i=1;i<=n;i++)
        {
                if(i==1)
                        cout<<t[i];
                else
                        cout<<" "<<t[i];
        }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值