算法_第k大的数_快排(leetcode215,java)

本文介绍了一种利用快速排序算法寻找给定数组中第k个最大元素的方法。通过递归和三目运算,实现了在O(n log n)的时间复杂度内找到答案。示例代码展示了如何在Java中实现这一功能,并提供了具体的操作步骤和示例输入输出。
摘要由CSDN通过智能技术生成


前言

1.(Math.random()(x-y))+y // Math.random()(x-y+1)+y; 随机数x~y
2.递归
3.三目运算法则
4.快排模板

void quick_sort(int q[], int l, int r)
{
    if (l >= r) return;

    int i = l - 1, j = r + 1, x = q[l + r >> 1];
    while (i < j)
    {
        do i ++ ; while (q[i] < x);
        do j -- ; while (q[j] > x);
        if (i < j) swap(q[i], q[j]);
    }
    quick_sort(q, l, j), quick_sort(q, j + 1, r);
}

作者:yxc
链接:https://www.acwing.com/blog/content/277/
来源:AcWing

一、题目描述

给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。

请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。

示例 1:
输入: [3,2,1,5,6,4] 和 k = 2
输出: 5

示例 2:
输入: [3,2,3,1,2,4,5,5,6] 和 k = 4
输出: 4

提示:
1 <= k <= nums.length <= 104
-104 <= nums[i] <= 104

二、思路

目标寻找第k大的数,所以可以利用快排(快排基础就不细说了,可以自己去了解一下),这些数不一定排好,标准数左边是大数,右边是小数,然后再在左边大数中寻找目标数,如果此时标准数刚刚好是所求下标(在数组中是k-1),则即为所求值。

三、代码实现

代码如下(示例):

class Solution {
    public int findKthLargest(int[] nums, int k) {
	return QuickSort(nums,0,nums.length-1,k);
	}
	public int QuickSort(int nums[],int l,int r,int k)
	{
		int index = randomParam(nums, l, r);
		if(index == k-1)
		{
			return nums[index];
		}else{
			return index>k-1?  QuickSort(nums,l,index-1,k): QuickSort(nums,index+1,r,k); 
		}
	}
	public int randomParam(int nums[],int l,int r)
	{
		int b = (int)(Math.random()*(r-l+1)+l);
		swap(nums,b,r);
		return quick_sort(nums,l,r);
	}
	public int quick_sort(int nums[],int l,int r)
	{ // 可以记住这个模板,把基准数默认放到最右边,然后开始左右指针移动比较
	//这里没有用那个do_while模板,那个容易超过时间限制
		int c = r;
		int index = nums[r];
		while(l<r)
		{
			while(l<r && nums[l] > index) l++;
			while(l<r && nums[r] <= index) r--; 
			if(l<r) 
                swap(nums,l,r);
		}
		swap(nums,l,c);
		return l;
	}
	public void swap(int [] nums,int l, int r)
	{
		int temp = nums[l];
		nums[l] = nums[r];
		nums[r] = temp;
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万物皆可der

感谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值