算法
-
算法的定义
算法是一个为了解决某类问题而规定的一个有限长的操作序列。 -
算法的五个特性
①有穷性。算法的执行步数和时间应该是有穷的。
②确定性。每次执行的操作在算法中都应该有明确的规定。
③可行性。算法的所有操作都可以通过已经实现的基础操作来实现。
④输入。一个算法有零个或多个输入。
⑤输出。一个算法有一个或多个输出。没有输出的算法没有意义。 -
评价算法的优劣性的基本标准
①正确性
②可读性
③健壮性。对于非法输入的数据,好的算法可以适当做出正确反应,而不产生一些奇怪的输出结果。
④高效性。包括时间高效和空间高效。 -
算法的时间复杂度
①算法效率分析的目的:刊算法是否可行,在对于同一问题有多个算法时,可以从中选出最优算法。
②事后统计法和事前分析估算法(常用)。
③问题规模和语句频度
问题规模:算法求解问题输入量的多少,问题大小的本质表现,常用n表示。不同问题中,n的含义不同。一般而言,n越大算法的执行时间越长。
语句频度:一条语句的重复执行次数称作语句频度。
④算法的时间复杂度定义
一般,为了客观地反映一个算法的执行时间,可以只用算法中的“基本语句”的执行次数来度量算法的工作量。
基本语句:指算法中重复执行次数和算法的执行时间成正比的语句。
通常,算法的执行时间随问题规模的增长而增长。因此,我们一般考虑当问题规模无限大时,算法中基本语句的执行次数在渐进意义下的阶。
一般情况下,算法中基本语句重复执行的次数是问题规模n的某个函数f(n),算法的时间量度记作**T(n)=0(f(n))**表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐进时间复杂度,简称时间复杂度。
另外,算法中语句执行一次实际所需的具体时间是与机器的软件,硬件等密切相关的,所以,算法分析并非精确的统计算法实际执行的所需时间,而只是一种对算法中语句执行次数的估计。