代码随想录 Day - 50|#123 买卖股票的最佳时机 III|#188 买卖股票的最佳时机 IV

文章讲述了如何使用动态规划解决LeetCode中的两个股票交易问题,分别是最多两笔交易和最多k笔交易。通过定义不同状态和状态转移方程,计算在给定股票价格数组中获取最大利润的方法。
摘要由CSDN通过智能技术生成

清单

● 123.买卖股票的最佳时机III
● 188.买卖股票的最佳时机IV

LeetCode #123 买卖股票的最佳时机 III

1. 题目

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成两笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

2. 思路

  1. dp数组含义: 最多完成两笔交易,共存在五种状态 1.不交易 2. 第一次买入 3. 第一次卖出 4. 第二次买入 5. 第二次卖出 dp[i][j] 为第i天所能获取的最大利润, i 代表天数 j代表交易状态
  2. 递推公式:
    1. 若i天均不操作: dp[i][0] = dp[i-1][0]
    2. 若i天第一次买入: dp[i][1] = max(dp[i-1][1] #前一天已买入, dp[i-1][0] - prices[i]) # i 天买入
    3. 第i天第一次卖出: dp[i][2] = max(dp[i-1][2] #前一天已卖出, dp[i-1][1] + prices[i]) # i 天卖出
    4. 若i天第二次买入: dp[i][3] = max(dp[i-1][3] #前一天已买入, dp[i-1][2] - prices[i]) # i 天买入
    5. 第i天第二次卖出: dp[i][4] = max(dp[i-1][4] #前一天已卖出, dp[i-1][3] + prices[i]) # i 天卖出
  3. 初始化: dp[0][1] = - prices[i] dp[0][3] = - prices[i]
  4. 遍历顺序: 正向遍历

3. 代码实现

class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        dp = [[0] * 5 for _ in range(len(prices))]

        dp[0][1] = - prices[0]
        dp[0][3] = - prices[0]

        for i in range(1,len(prices)):
            dp[i][0] = dp[i-1][0] # 不操作
            dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i]) #第一次买入
            dp[i][2] = max(dp[i-1][2], dp[i-1][1] + prices[i]) #第一次卖出
            dp[i][3] = max(dp[i-1][3], dp[i-1][2] - prices[i]) #第二次买入
            dp[i][4] = max(dp[i-1][4], dp[i-1][3] + prices[i]) #第二次卖出

        return dp[-1][4]

LeetCode #188 买卖股票的最佳时机 IV

1. 题目

给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

2. 思路

思路同上一题一样,共存在2k+1种状态 0为不操作,奇数为买入,偶数为卖出

3. 代码实现

class Solution:
    def maxProfit(self, k: int, prices: List[int]) -> int:

        dp = [[0] * ( 2 * k + 1) for _ in range(len(prices))]

        for i in range(1, 2 * k, 2):
            dp[0][i] = - prices[0]
        
        for i in range(1, len(prices)):
            for j in range(0, 2*k - 1, 2):
                dp[i][j+1] = max(dp[i-1][j+1], dp[i-1][j] - prices[i])
                dp[i][j+2] = max(dp[i-1][j+2], dp[i-1][j+1] + prices[i])
        
        return dp[-1][2*k]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值