在数字化时代,数据已成为企业乃至整个社会的宝贵资产。然而,数据的价值并非自然显现,而是需要通过科学的管理来挖掘和实现。今天,就让我们一起走进《DAMA数据管理知识体系指南(第二版)》的第一章,开启数据价值之旅,探索数据管理的奥秘。
一、数据管理的定义与重要性
数据管理是为了交付、控制、保护并提升数据和信息资产的价值,在其整个生命周期中制订计划、制度、规程和实践活动,并执行和监督的过程。数据管理的目标是理解并支撑企业及其利益相关方的信息需求,获取、存储、保护数据,确保数据质量,防止数据未经授权或被不当访问、操作及使用,最终服务于企业增值的目标。
数据管理的重要性不言而喻。信息和知识是竞争优势的关键,数据作为信息的原材料,其质量直接影响企业的决策效率和准确性。如果不能像管理资本一样管理好数据,就会浪费机会,甚至带来风险。有效管理数据资产,就像有效管理财务和物理资产一样,能够为企业创造价值。
二、数据管理的基本概念
(一)数据
数据是反映客观事实的信息,它可以是数字、文字、图像、视频等各种形式。数据的价值在于它能够帮助我们理解世界、做出决策。数据具有独特属性,它不会像实物资产那样磨损或消耗,但数据的使用不会减少其价值,反而可能通过进一步的处理和分析产生更多的数据。
(二)数据与信息
数据是信息的原材料,信息是数据在上下文语境中的呈现。数据需要经过加工、分析和解释,才能转化为有用的信息。数据和信息相互交织,相互依赖,它们都需要被管理,以确保其质量和可用性。
(三)数据是一种组织资产
资产是可以被拥有或控制、持有或产生价值的经济资源。数据作为一种资产,其价值越来越受到重视。数据资产能够帮助企业更好地理解客户、创造新产品和服务、提高运营效率。数据驱动的企业能够基于数据做出更科学、更高效的决策。
三、数据管理原则
数据管理遵循一系列原则,这些原则指导数据管理实践,确保数据资产的有效管理和利用。
(一)数据是有独特属性的资产
与其他资产相比,数据不会因使用而减少,它可以被多次复制和使用,且具有动态性和可扩展性。
(二)数据的价值可以用经济术语表示
尽管数据的价值难以直接量化,但组织可以通过评估数据的成本、收益和风险,来衡量数据的价值。
(三)管理数据意味着对数据的质量管理
数据质量是数据管理的核心目标。高质量的数据能够为组织带来更准确的决策支持,提升业务效率和竞争力。
(四)管理数据需要元数据
元数据是描述数据的数据,它帮助我们理解数据的含义、来源、结构和用途。元数据是数据管理的基础,没有元数据,数据就像失去了上下文的符号,难以理解和使用。
(五)数据管理需要规划
数据管理需要从战略和运营两个层面进行规划。数据管理规划包括数据架构设计、数据生命周期管理、数据安全策略等多个方面。
(六)数据管理须驱动信息技术决策
数据管理与信息技术紧密相关。数据管理的目标是确保技术能够支持组织的战略数据需求,而不是被技术所驱动。
(七)数据管理是跨职能的工作
数据管理需要业务人员和技术人员的共同参与。数据管理涉及多个领域,包括数据架构、数据建模、数据安全、数据质量等,需要跨职能团队的协作。
(八)数据管理需要企业级视角
数据管理需要从企业级的角度进行规划和实施。数据是企业的共同资产,需要在企业范围内进行统一管理和共享。
(九)数据管理需要多角度思考
数据管理需要考虑数据的生命周期、数据的使用方式、数据的法律合规要求等多个角度。数据管理不能局限于单一的视角,而要全面考虑数据的各个方面。
(十)数据管理需要全生命周期的管理
数据管理贯穿数据的整个生命周期,从数据的创建、获取、存储、使用到最终的销毁。不同类型的数据有不同的生命周期特征,需要根据数据的特点进行管理。
(十一)数据管理需要纳入与数据相关的风险
数据管理不仅要关注数据的价值,还要考虑数据的风险。数据可能丢失、被盗或误用,组织需要评估数据风险,并采取相应的措施来降低风险。
(十二)有效的数据管理需要领导层承担责任
数据管理需要领导层的支持和推动。领导层需要制定数据管理战略,提供资源支持,并在组织内营造数据驱动的文化。
四、数据管理的挑战
数据管理面临着诸多挑战,这些挑战主要源于数据本身的特性以及数据管理的复杂性。
(一)数据与其他资产的区别
数据无形、易复制、可多处使用,但一旦丢失或损坏,恢复成本极高。数据的这些特性使得数据管理与实物资产和金融资产管理有很大不同。
(二)数据价值的衡量
数据的价值难以用传统的方式衡量。数据的成本和收益没有统一的标准,数据的价值是上下文相关的,且往往是暂时的。
(三)数据质量
低质量的数据可能导致企业决策失误,造成巨大损失。数据质量的管理需要贯穿数据的整个生命周期,需要业务人员和技术人员的共同参与。
(四)数据优化计划
数据管理需要制定长期的优化计划,但组织往往面临资源和时间的限制。数据管理需要平衡短期目标和长期目标,确保数据管理活动的可持续性。
(五)元数据和数据管理
元数据是数据管理的基础,但元数据本身也需要进行严格的管理。元数据的管理是全面改进数据管理的起点。
(六)数据管理是跨职能的工作
数据管理需要跨职能团队的协作,但不同部门之间可能存在沟通障碍和利益冲突。数据管理需要建立有效的协作机制,确保团队成员能够共同朝着目标努力。
(七)建立企业的视角
数据是企业的“横向领域”,它跨越不同的部门和业务领域。数据管理需要打破部门壁垒,建立企业级的数据管理视角。
(八)数据管理需要多角度思考
数据管理需要考虑不同国家和行业的法律和合规要求,需要考虑数据的潜在用途和误用风险。数据管理需要从多个角度进行思考,以确保数据管理活动的全面性和有效性。
(九)数据生命周期
数据的生命周期管理需要考虑数据的创建、使用、维护、共享和销毁等多个环节。不同类型的数据有不同的生命周期管理需求,需要根据数据的特点进行规划和管理。
(十)不同种类的数据
数据有多种类型,如交易数据、参考数据、主数据、元数据等。不同类型的数据有不同的管理要求和风险,需要进行分类管理。
(十一)数据和风险
数据不仅代表价值,也代表风险。数据的误用可能导致组织面临法律风险、声誉风险和财务风险。数据管理需要评估和降低数据风险,确保数据的安全和合规使用。
(十二)数据管理和技术
数据管理与技术紧密相关,但技术不能完全解决数据管理的问题。数据管理需要技术的支持,但管理数据的决策不能仅仅依赖于技术。
(十三)高效的数据管理需要领导力和承诺
数据管理需要领导层的支持和承诺。领导层需要制定数据管理战略,提供资源支持,并在组织内营造数据驱动的文化。数据管理的成功不仅取决于技术,更取决于领导力和组织的承诺。
五、数据管理战略
数据管理战略是组织数据管理活动的指导方针。数据管理战略需要与组织的战略目标保持一致,确保数据管理活动能够支持组织的业务发展。
(一)数据管理战略的组成
数据管理战略包括数据管理愿景、商业案例、指导原则、使命和目标、成功措施、短期计划、数据管理程序组件、优先工作计划等内容。数据管理战略需要明确数据管理的目标和方向,为数据管理活动提供指导。
(二)数据管理战略的实施
数据管理战略的实施需要制定详细的实施路线图,明确各项任务的责任人、时间表和资源需求。数据管理战略的实施需要组织的全员参与,需要建立有效的沟通机制和监督机制,确保数据管理活动的顺利进行。
六、数据管理框架
数据管理框架是理解和应用数据管理知识体系的工具。DAMA国际提出了多种数据管理框架,帮助组织更好地理解和应用数据管理知识体系。
(一)战略一致性模型
战略一致性模型强调数据管理与组织战略、IT战略、组织和流程、信息系统之间的关系。通过战略一致性模型,组织可以更好地理解数据管理在组织战略中的位置,确保数据管理活动与组织战略保持一致。
(二)阿姆斯特丹信息模型
阿姆斯特丹信息模型从战略角度看待业务和IT的一致性,强调信息治理和数据质量的重要性。通过阿姆斯特丹信息模型,组织可以更好地理解数据管理在业务和IT之间的桥梁作用。
(三)DAMA-DMBOK框架——车轮图
DAMA-DMBOK框架是DAMA国际的核心框架,它将数据管理知识体系分为11个知识领域,包括数据治理、数据架构、数据建模、数据存储和操作、数据安全、主数据管理、参考数据管理。
(四)语境关系图
👏觉得文章对自己有用的宝子可以收藏文章并给小编点个赞!
👏想了解更多统计学、数据分析、数据开发、数据治理、机器学习算法、深度学习等有关知识的宝子们,可以关注小编,希望以后我们一起成长!