质数(试除法,分解质因数,筛质数)

本文详细讲解了质数的判定方法(试除法)、分解质因数的方法(试除法与反证法),并介绍了几种优化的质数筛法,如朴素筛法、埃及氏筛法和线性筛法。核心算法和优化策略逐一剖析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

判断是不是质数

质数的判定------试除法 O ( n ) O(\sqrt{n}) O(n ) 其 实 是 [ l o g n , n ] 其实是[logn,\sqrt{n}] [logn,n ]

for循环里面的判断条件一定要写成for(int i = 2; i <= a / i; ++i),如果是i*i<=a,那么对于判断较大的数的时候会溢出
核心代码:

bool isPrime()
{
    if(a < 2)
        return false;
    for(int i = 2; i <= a / i; ++i)
        if(a % i == 0)
            return false;
    return true;
}

分解质因数------试除法 O ( n ) O(\sqrt{n}) O(n )

从小到大枚举尝试所有n的因数,也只需要枚举到 n \sqrt{n} n 就行了
n n n 中最多只包含一个大于 n \sqrt{n} n 的质因子。反证法:如果有两个,乘起来就大于了 n n n

n = p 1 a 1 ∗ p 2 a 2 ∗ p 3 a 3 . . . . . p n a n n=p_1^{a_1} * p_2^{a_2} *p_3^{a_3}.....p_n^{an} n=p1a1p2a2p3a3.....pnan
注意退出 f o r for for 循环之后, a a a 可能大于 1 1 1 ,因为可能存在一个大于 n \sqrt{n} n 的质因数,比如
21 = 3 ∗ 7 21=3*7 21=37
核心代码如下:

void output()
{
    for(int i = 2; i <= a/i; ++i)
    {
        if(a % i == 0)
        {
            int s = 0;
            while(a % i == 0)
            {
                a /= i;
                ++s;
            }
            printf("%d %d\n", i, s);
        }
    }
    if(a>1)//n当中最多只包含一个大于根号n的质因子
        printf("%d %d\n",a,1);
}

筛质数

朴素筛法 O ( n l o g n ) O(nlogn) O(nlogn)

筛掉所有数的倍数

int n,st[MAXN],prime[MAXN],cnt;

void get_prime()
{
    for(int i=2;i<=n;++i)
    {
        if(!st[i])
        {
            prime[cnt++]=i;
            st[i]=true;
        }
        for(int j=i*2;j<=n;j+=i)
            st[j]=true;
    }
}

埃及氏筛法 O ( n l o g l o g n ) O(nloglogn) O(nloglogn)

筛掉所有质数的倍数

质数定理: 1 − n 1-n 1n 中的质数个数是 n l n n \frac{n}{lnn} lnnn

st数组用来保存当前这个数是否被筛掉,prime数组用来存储素数,与朴素筛法的区别就是把for放进了if里面

int n,st[MAXN],prime[MAXN],cnt;
void get_prime()
{
    for(int i=2;i<=n;++i)
    {
        if(!st[i])
        {
            prime[cnt++]=i;
            st[i]=true;
            for(int j=i*2;j<=n;j+=i)
                st[j]=true;
        }
    }
}

线性筛法 O ( n ) O(n) O(n)

核心:一个数 n n n 只会它他的最小质因子筛掉,每个数只有一个最小质因子,所以是线性的

情况 1 1 1 :当 i % p r i m e [ j ] = = 0 i\%prime[j]==0 i%prime[j]==0 时, p r i m e [ j ] prime[j] prime[j] 一定是i的最小质因子,那么 p r i m e [ j ] prime[j] prime[j] 也一定是 p r i m e [ j ] ∗ i prime[j]*i prime[j]i 的最小质因子
情况 2 2 2 :当 i % p r i m e [ j ] ! = 0 i\%prime[j]!=0 i%prime[j]!=0 时, p r i m e [ j ] prime[j] prime[j] 一定小于i的最小质因子,所以 p r i m e [ j ] prime[j] prime[j] 也一定是 p r i m e [ j ] ∗ i prime[j]*i prime[j]i 的最小质因子

for(int i = 2; i <= n; ++i)
{
    if(!st[i])//如果这个数是质数,把他加到primes集合里面去
        primes[cnt++] = i;
    for(int j = 0; primes[j] <= n / i; ++j)//保证每个数都只被他的最小质因子筛掉,之所以要<=n/i,是因为保证下面的st不越界
    {
        st[primes[j] * i] = true;//不管pirmes[j]这个数是否能整除i,primes[j]*i这个数的最小质因子一定是primes[j]
        if(i % primes[j] == 0)//这里之所以要break掉,是因为如果不break就不能保证下一次primes[j]是primes[j]*i的最小质因子,这样就多算了
            break;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值