欧拉函数总结

欧拉函数     O ( n ) \,\,\,O(\sqrt{n}) O(n )

1 ∼ N 1∼N 1N 中与 N N N 互质的数的个数被称为欧拉函数,记为 ϕ ( N ) ϕ(N) ϕ(N)
两个数互质就是这两个数只有 1 1 1 这个公因子
若在算数基本定理中, N = p 1 a 1 ∗ p 2 a 2 … p m a m N=p_1^{a1}*p_2^{a_2}…p_m^{a_m} N=p1a1p2a2pmam,则:
ϕ ( N ) = N × p 1 − 1 p 1 × p 2 − 1 p 2 × … × p m − 1 p m ϕ(N) = N×\frac{p_1−1}{p_1}×\frac{p_2−1}{p_2}×…×\frac{p_m−1}{p_m} ϕ(N)=N×p1p11×p2p21××pmpm1
上面这个式子是用容斥原理证明的

模板题:AcWing 873. 欧拉函数

#include<iostream>
#include<vector>
using namespace std;
#define ll long long
int n, a;

int main()
{
    scanf("%d", &n);
    while(n--)
    {
        scanf("%d", &a);
        int res = a;
        for(int i = 2; i <= a/i; ++i)
            if(a % i == 0)
            {
                while(a % i == 0)
                    a /= i;
                res/=i;
                res*=i-1;
            }
        if(a>1)
        {
            res/=a;
            res*=a-1;
        }
        printf("%d\n", res);
    }
    return 0;
}

筛法求欧拉函数     O ( n ) \,\,\,O(n) O(n)

模板题:AcWing 874. 筛法求欧拉函数

解释: p h i 数 组 存 的 是 每 个 数 的 欧 拉 函 数 phi数组存的是每个数的欧拉函数 phi p r i m e s 数 组 存 的 是 素 数 primes数组存的是素数 primes
核心内容如下:
①:当 i i i 是素数的时候, p h i [ i ] = i − 1 phi[i]=i-1 phi[i]=i1

②:当 i % p j = = 0 i\%pj==0 i%pj==0 时,因为此时pj是i的质因子,所以
p h i [ p j ∗ i ] = p j ∗ i ∗ p 1 − 1 p 1 ∗ p 2 − 1 p 2 ∗ ⋅ ⋅ ⋅ phi[pj*i]=pj*i*\frac{p_1-1}{p_1}*\frac{p_2-1}{p_2}*··· phi[pji]=pjip1p11p2p21
p j pj pj 后面的就是 p h i [ i ] phi[i] phi[i]
所以 p h i [ p j ∗ i ] = p j ∗ p h i [ i ] phi[pj*i]=pj*phi[i] phi[pji]=pjphi[i]

③:当 i % p j    ! = 0 i\%pj\,\,!=0 i%pj!=0 时,
p h i [ p j ∗ i ] = p j ∗ i ∗ p 1 − 1 p 1 ∗ p 2 − 1 p 2 ∗ ⋅ ⋅ ⋅ ∗ p k − 1 p k ∗ p j − 1 p j phi[pj*i]=pj*i*\frac{p_1-1}{p_1}*\frac{p_2-1}{p_2}*···*\frac{p_k-1}{p_k}*\frac{p_j-1}{p_j} phi[pji]=pjip1p11p2p21pkpk1pjpj1
所以
p h i [ p j ∗ i ] = p j ∗ p j − 1 p j ∗ i ∗ p 1 − 1 p 1 ∗ p 2 − 1 p 2 ∗ ⋅ ⋅ ⋅ ∗ p k − 1 p k phi[pj*i]=pj*\frac{p_j-1}{p_j}*i*\frac{p_1-1}{p_1}*\frac{p_2-1}{p_2}*···*\frac{p_k-1}{p_k} phi[pji]=pjpjpj1ip1p11p2p21pkpk1

最后一项是属于 p j pj pj
所以 p h i [ p j ∗ i ] = p h i [ p j ] ∗ p h i [ i ] phi[pj*i]=phi[pj]*phi[i] phi[pji]=phi[pj]phi[i]
所以 p h i [ p j ∗ i ] = ( p j − 1 ) ∗ p h i [ i ] phi[pj*i]=(pj-1)*phi[i] phi[pji]=(pj1)phi[i]

int primes[MAXN], phi[MAXN], st[MAXN], cnt;
ll n, res;

void get_eulers()
{
    phi[1] = 1;
    for(int i = 2; i <= n; ++i)
    {
        if(!st[i])
        {
            primes[cnt++] = i;
            phi[i] = i - 1;

        }
        for(int j = 0; primes[j] <= n / i; ++j)
        {
            st[primes[j] * i] = true;
            if(i % primes[j] == 0)
            {
                phi[primes[j] * i] = phi[i] * primes[j];
                break;
            }
            else
                phi[primes[j] * i] = phi[i] * (primes[j] - 1);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值