前景:
最近忙于赶项目,终于做收尾工作了,通过这段期间的历练,相机的选型和参数的理解对项目的成功运作起着至关重要的目的,今天的主题就是聊一下,相机选型和相机参数的详细解析
事先声明:一下内容均为个人理解的原创内容,希望各位看客可以点点赞,维持up主持续更新的动力
正题:
在做一个项目之前,我们需要对项目做调研评估和打光测试,看看该项目的成本和收益是多少,值不值得去做,这个步骤中,如果对相机硬件有清晰的了解可以成倍的提高你的项目周期时间。本篇文字,依附于度申的选型设备来罗列
上图所述,是工业面阵相机的选型技术参数,从图中我们可以看到,面阵相机分为2种快门类型(全局快门和卷帘快门),接下来我将从4个方面基于本人的理解来聊两者之间的区别是什么
1.捕捉方式
卷帘快门的捕获方式类似于读条形码,从上往下依次逐行曝光捕捉
全局快门就是传感器的所有像素同时开始曝光,并同时结束曝光
2.硬件复杂度和成本
卷帘快门相比全局快门,构造简单,成本也便宜,适合静态场景. 主要应用于轻量化、低成本应用场景
全局快门相比卷帘快门,构造复杂,成本也昂贵,适合动态场景,主要应用于工业检测,科学相机和高端相机
3.应用领域
卷帘相机:优势:适用于静态场所,高分辨率低功耗(手机相机,无人机,便携式相机)
全局快门:优势:使用于快速运动的场景,图像无失真 (典型场景:工业检测、机器视觉、运动捕捉、高速摄影)
4.可能出现的问题以及解决方式
在使用卷帘相机进行运动拍照时,有可能会出现卷帘伪影(由于逐行读取的时候有曝光延误,可能会出现成像伪影)
- 倾斜:例如汽车轮子变形、旋转物体呈现倾斜效果。
- 果冻效应(Jello Effect):画面看起来像果冻一样颤动。
解决方式
1.拍摄方式
增加快门速度,减少每一行曝光时间(提高快门可能需要增量光线)
增加频率:更高的频率可以减少快门读取的时间间隔,使用高频率相机
2.硬件设备
使用带有全局快门的相机
使用具有更快行的扫描速度传感器 / 一些高端 CMOS 传感器可以提供更高的帧率,从而减轻伪影问题
3.减少运动和振动
减缓相机或物体的运动
- 避免快速的横向运动,因为伪影通常在横向移动时最为明显。
- 在拍摄时尽可能平稳移动相机,可以使用三脚架或稳定器。
优化拍摄角度
- 调整拍摄角度,避免垂直或水平运动过大的场景。
- 通过构图减少运动伪影对画面的影响。
4.光源频率优化
- 使用持续光源或高频光源(如 LED 灯),避免因低频光源(如荧光灯)引发滚动快门的频闪问题。
- 设置摄像头的快门速度与光源的频率同步,避免光线变化加剧伪影。
5.使用慢动作拍摄
接下来讲,相机尺度的概念,相元尺寸是指图像传感器中每个像素单元的物理尺寸,通常以微米(µm)为单位。例如,某传感器的相元尺寸为 1.4 µm,表示每个像素的边长为 1.4 微米。它直接影响传感器的性能,包括感光能力、动态范围、噪声表现等,是评估图像质量的重要参数。
一般来说,大相元尺寸能捕获更多的光子(光线),提升传感器的光敏性能,适合低光环境拍摄 小相元尺寸能在更小的传感器上放置更多像素,提高分辨率,但感光能力可能下降
大相元尺寸:每个相元能容纳更多电荷,减少饱和的可能性,因此动态范围更高,亮部和暗部细节表现更佳。小相元尺寸:动态范围较低,容易出现亮部过曝或暗部无细节。
小相元尺寸:在相同传感器尺寸下,可以容纳更多像素,适合高分辨率成像需求。大相元尺寸:分辨率可能较低,但单个像素的成像质量更高。
大相元尺寸:适用于低光、动态范围要求高的场景,例如专业相机、天文摄影、工业检测。小相元尺寸:适用于设备体积受限且需要高分辨率的场景,例如智能手机、无人机。
可以通过传感器尺寸和分辨率计算相元尺寸:
相元尺寸=传感器尺寸/分辨率
- 传感器尺寸以毫米(mm)表示。
- 分辨率以像素数表示(例如,4000 × 3000 像素)
最后讲位深的概念,位深(Bit Depth)**是相机传感器的重要参数之一,用于描述每个像素记录光信号的精度。它表示图像中每个像素的亮度信息可以用多少位二进制数据来表示。位深直接影响图像的色彩范围和细节表现。
1. 什么是位深?
位深的单位是 比特(bit),通常表示为 n-bit。
-
n 表示每个像素的亮度或颜色值可用 2n 种可能性来表示。
2n2^n
- 例如:
-
8-bit:每像素有 28=256 个亮度级别。
28=2562^8 = 256
-
16-bit:每像素有 216=65,536 个亮度级别。
216=65,5362^{16} = 65,536
-
- 例如:
2. 位深的意义
- 位深越高,图像的动态范围和色彩精度越好。
- 动态范围:更高的位深能够更精确地表现图像中最亮和最暗区域的细节。
- 色彩精度:每个像素可以表示更多的颜色,减少色彩断层(banding)问题。
3. 常见位深及应用场景
8-bit
- 每像素 256 个亮度级别。
- 应用:JPEG 图像、普通显示器适配、消费级视频设备。
- 优势:数据量小,处理速度快。
- 局限:动态范围和色彩精度有限。
10-bit
- 每像素 1024 个亮度级别。
- 应用:高端显示设备(HDR 显示器)、专业视频录制。
- 优势:较好的动态范围,色彩过渡更自然。
12-bit
- 每像素 4096 个亮度级别。
- 应用:摄影(RAW 格式)、工业相机。
- 优势:高动态范围,适合后期调整。
14-bit 和 16-bit
- 每像素分别有 16,384 和 65,536 个亮度级别。
- 应用:高端摄影(RAW 格式)、科学成像(显微镜、天文相机)。
- 优势:极高的动态范围和色彩细节,特别适合高对比度场景。
4. 位深对图像质量的影响
动态范围
- 位深越高,动态范围越大,细节表现越丰富。
- 例如,16-bit 相机会比 8-bit 更能表现亮部和暗部的细节。
后期处理空间
- 高位深图像可以在后期处理中调整曝光和色调时,避免色彩断层和细节丢失。
- 例如,摄影师通常选择 12-bit 或 14-bit RAW 格式拍摄,以便更灵活地调整亮度和色彩。
存储需求
- 位深越高,图像文件占用的存储空间越大。
- 例如,16-bit RAW 图像比 8-bit JPEG 图像占用更多存储,但图像质量更高。
5. 位深的选择
- 普通用途:8-bit 足以满足大多数日常需求,如网络图片、普通视频。
- 高质量摄影或工业检测:12-bit 或 14-bit 可捕捉更多细节和动态范围,适合需要后期处理的场景。
- 科学和专业用途:16-bit 是最佳选择,确保最大的信息保留。