数据分析1-1、1-2、1-3

本文展示了使用Pandas进行数据读取、预处理和分析的基本操作,包括读取CSV文件、创建Series和DataFrame、数据清洗、排序以及计算统计描述。内容涵盖了从数据载入到初步观察,再到探索性数据分析的多个关键步骤。
摘要由CSDN通过智能技术生成

1-1数据载入及初步观察

import numpy as np
import pandas as pd
df = pd.read_csv('train.csv')
df.head(3)
df = pd.read_csv('/Users/chenandong/Documents/datawhale数据分析每个人题目设计/招募阶段/第一单元项目集合/train.csv')
df.head(3)
chunker = pd.read_csv('train.csv', chunksize=1000)
df = pd.read_csv('train.csv', names=['乘客ID','是否幸存','仓位等级','姓名','性别','年龄','兄弟姐妹个数','父母子女个数','船票信息','票价','客舱','登船港口'],index_col='乘客ID',header=0)
df.head()
df.info()
df.head(10)
df.tail(15)
df.isnull().head()
df.to_csv('train_chinese.csv')

1-2Pandas基础

import numpy as np
import pandas as pd
sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
example_1 = pd.Series(sdata)
example_1
data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],
        'year': [2000, 2001, 2002, 2001, 2002, 2003],'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}
example_2 = pd.DataFrame(data)
example_2
df = pd.read_csv('/Users/chenandong/Documents/datawhale数据分析每个人题目设计/titanic/train.csv')
df.head(3)
df.columns
df['Cabin'].head(3)
df.Cabin.head(3)
test_1 = pd.read_csv('test_1.csv')
test_1.head(3)
del test_1['a']
test_1.head(3)
df.drop(['PassengerId','Name','Age','Ticket'],axis=1).head(3)
df.head(3) 
df[df["Age"]<10].head(3)
midage = df[(df["Age"]>10)& (df["Age"]<50)]
midage.head(3)
midage = midage.reset_index(drop=True)
midage.head(3)
midage.loc[[100],['Pclass','Sex']]
midage.loc[[100,105,108],['Pclass','Name','Sex']] 
midage.iloc[[100,105,108],[2,3,4]]

1-3探索性数据分析

text = pd.read_csv('train_chinese.csv')
text.head()
frame = pd.DataFrame(np.arange(8).reshape((2, 4)), 
                     index=['2', '1'], 
                     columns=['d', 'a', 'b', 'c'])
frame
frame.sort_values(by='c', ascending=True)
frame.sort_index()
frame.sort_index(axis=1)
frame.sort_index(axis=1, ascending=False)
frame.sort_values(by=['a', 'c'], ascending=False)
text.sort_values(by=['票价', '年龄'], ascending=False).head(3)
frame1_a = pd.DataFrame(np.arange(9.).reshape(3, 3),
                     columns=['a', 'b', 'c'],
                     index=['one', 'two', 'three'])
frame1_b = pd.DataFrame(np.arange(12.).reshape(4, 3),
                     columns=['a', 'e', 'c'],
                     index=['first', 'one', 'two', 'second'])
frame1_a
frame1_b
frame1_a + frame1_b
max(text['兄弟姐妹个数'] + text['父母子女个数'])
frame2 = pd.DataFrame([[1.4, np.nan], 
                       [7.1, -4.5],
                       [np.nan, np.nan], 
                       [0.75, -1.3]
                      ], index=['a', 'b', 'c', 'd'], columns=['one', 'two'])
frame2

frame2.describe()
text['票价'].describe()
text['父母子女个数'].describe()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值