一、图的概述
1、图的基本介绍
图是一种数据结构,其中节点可以就有零个或多个相邻元素。两个节点之间的连接称边。节点也可以称为顶点
2、图的存储方式
(1)二维数组表示(邻接矩阵)
可以连通的用1表示,不能连通的用0表示
(2)链表表示(邻接表)
邻接表的实现只关心存在的边,不存在的不表示,因此没有空间浪费,是由数组+链表组成
二、快速入门案例
代码实现
public class Graph {
private ArrayList<String> vertexList; //存储顶点的集合
private int[][] edges;//存储图的邻接矩阵
private int numOfEdges; //表示边的数目
public static void main(String[] args) {
int n=5;
String VertexValue[] = {"A","B","C","D","E"};
//创建图对象
Graph graph = new Graph(n);
for (String vertex:VertexValue){
graph.insertVertex(vertex);
}
//添加边
graph.insertEdge(0,1,1);
graph.insertEdge(0,2,1);
graph.insertEdge(1,2,1);
graph.insertEdge(1,3,1);
graph.insertEdge(1,4,1);
//显示
graph.showGraph();
}
//构造器
public Graph(int n) {
edges = new int[n][n];
vertexList = new ArrayList<String>(n);
numOfEdges = 0;
}
//返回节点的个数
public int getNumOfVertex(){
return vertexList.size();
}
//得到边的数目
public int getNumOfEdges(){
return numOfEdges;
}
//返回节点i对应的数据
public String getValueByIndex(int i){
return vertexList.get(i);
}
//插入顶点
public void insertVertex(String vertex){
vertexList.add(vertex);
}
//返回v1和v2的权值
public int getWeight(int v1,int v2){
return edges[v1][v2];
}
//显示图对应的矩阵
public void showGraph(){
for (int[] link:edges){
System.out.println(Arrays.toString(link));
}
}
//添加边
//v1表示第一个顶点下标 v2表示第二个顶点下标 weight0还是1
public void insertEdge(int v1,int v2,int weight){
edges[v1][v2] = weight;
edges[v2][v1] = weight;
numOfEdges++;
}
}
三、图的遍历
图的遍历,就是对节点的访问。主要分为深度优先遍历和广度优先遍历
1、深度优先遍历DFS
基本思想
- 从初始访问结点出发,初始访问节点可能有多个邻接节点,深度优先遍历的策略就是首先访问第一个邻接节点,然后再以这个被访问的邻接节点作为初始节点,访问他的第一个邻接节点。可以理解为:每次都在访问完当前节点后首先访问当前节点的第一个邻接节点
- 我们可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个节点的所有邻接节点进行横向访问。
- 显然,深度优先搜索是一个递归的过程
算法步骤
- 访问初始节点v,并标记节点v为已访问
- 查找结点v的第一个邻接节点w
- 若w存在,则继续执行4,如果w不存在,则返回1,将从v的下一个结点继续
- 若w未被访问,对w进行深度优先递归(即把w当作另一个v,然后进行步骤123)
- 查找结点v的w邻接节点的下一个邻接节点转到步骤3
代码实现
public class Graph {
private ArrayList<String> vertexList; //存储顶点的集合
private int[][] edges;//存储图的邻接矩阵
private int numOfEdges; //表示边的数目
//定义一个数组boolean[],记录节点是否被访问
private boolean[] isVisited ;
public static void main(String[] args) {
int n=5;
String VertexValue[] = {"A","B","C","D","E"};
//创建图对象
Graph graph = new Graph(n);
for (String vertex:VertexValue){
graph.insertVertex(vertex);
}
//添加边
graph.insertEdge(0,1,1);
graph.insertEdge(0,2,1);
graph.insertEdge(1,2,1);
graph.insertEdge(1,3,1);
graph.insertEdge(1,4,1);
//显示
graph.showGraph();
System.out.println("深度遍历");
graph.dfs();
}
//构造器
public Graph(int n) {
edges = new int[n][n];
vertexList = new ArrayList<String>(n);
numOfEdges = 0;
isVisited = new boolean[5];
}
//得到第一个邻接节点的下标
//存在返回对应下标 不存在返回-1
public int getFirstNeighbor(int index){
for (int j = 0;j<vertexList.size();j++){
if (edges[index][j]>0){
return j;
}
}
return -1;
}
//根据前一个邻接结点的下标来获取下一个邻接节点
public int getNextNeighbor(int v1,int v2){
for (int j=v2+1;j<vertexList.size();j++){
if (edges[v1][j]>0){
return j;
}
}
return -1;
}
//深度优先遍历算法
private void dfs(boolean[] isVisited,int i){
//首先我们访问该节点,输出
System.out.println(getValueByIndex(i)+"->");
//将节点设置为已经访问
isVisited[i] = true;
//查找节点i的第一个邻接节点w
int w = getFirstNeighbor(i);
while (w!=-1){
if (!isVisited[w]){
dfs(isVisited,w);
}
//如果w被访问过了
w=getNextNeighbor(i,w);
}
}
//dfs进行一个重载,遍历我们所有的节点,并进行dfs
public void dfs(){
//遍历所有节点 进行dfs
for (int i=0;i<getNumOfVertex();i++){
if (!isVisited[i]){
dfs(isVisited,i);
}
}
}
//返回节点的个数
public int getNumOfVertex(){
return vertexList.size();
}
//得到边的数目
public int getNumOfEdges(){
return numOfEdges;
}
//返回节点i对应的数据
public String getValueByIndex(int i){
return vertexList.get(i);
}
//插入顶点
public void insertVertex(String vertex){
vertexList.add(vertex);
}
//返回v1和v2的权值
public int getWeight(int v1,int v2){
return edges[v1][v2];
}
//显示图对应的矩阵
public void showGraph(){
for (int[] link:edges){
System.out.println(Arrays.toString(link));
}
}
//添加边
//v1表示第一个顶点下标 v2表示第二个顶点下标 weight0还是1
public void insertEdge(int v1,int v2,int weight){
edges[v1][v2] = weight;
edges[v2][v1] = weight;
numOfEdges++;
}
}
2、广度优先遍历BFS
基本思想
类似于一个分层搜索的过程,广度优先遍历需要使用一个队列保持访问过的节点的顺序,以便按照这个顺序来访问这些节点的邻接节点
算法步骤
- 访问初始结点v并标记结点v为已访问
- 结点v入队列
- 当队列非空时,继续执行,否则算法结束
- 出队列,取得队头结点u
- 查找结点u的第一个邻接节点w
- 若点u的邻接节点w不存在,则转到步骤3;否则循环执行以下三个步骤
- 若结点w尚未被访问,则访问节点w并标记为已访问
- 结点w入队列
- 查找结点u的继w邻接节点后的下一个邻接节点w,转到步骤6;
代码实现
public class Graph {
private ArrayList<String> vertexList; //存储顶点的集合
private int[][] edges;//存储图的邻接矩阵
private int numOfEdges; //表示边的数目
//定义一个数组boolean[],记录节点是否被访问
private boolean[] isVisited ;
public static void main(String[] args) {
int n=5;
String VertexValue[] = {"A","B","C","D","E"};
//创建图对象
Graph graph = new Graph(n);
for (String vertex:VertexValue){
graph.insertVertex(vertex);
}
//添加边
graph.insertEdge(0,1,1);
graph.insertEdge(0,2,1);
graph.insertEdge(1,2,1);
graph.insertEdge(1,3,1);
graph.insertEdge(1,4,1);
//显示
graph.showGraph();
// System.out.println("深度遍历");
// graph.dfs();
System.out.println("广度优先");
graph.bfs();
}
//构造器
public Graph(int n) {
edges = new int[n][n];
vertexList = new ArrayList<String>(n);
numOfEdges = 0;
isVisited = new boolean[5];
}
//得到第一个邻接节点的下标
//存在返回对应下标 不存在返回-1
public int getFirstNeighbor(int index){
for (int j = 0;j<vertexList.size();j++){
if (edges[index][j]>0){
return j;
}
}
return -1;
}
//根据前一个邻接结点的下标来获取下一个邻接节点
public int getNextNeighbor(int v1,int v2){
for (int j=v2+1;j<vertexList.size();j++){
if (edges[v1][j]>0){
return j;
}
}
return -1;
}
//深度优先遍历算法
private void dfs(boolean[] isVisited,int i){
//首先我们访问该节点,输出
System.out.println(getValueByIndex(i)+"->");
//将节点设置为已经访问
isVisited[i] = true;
//查找节点i的第一个邻接节点w
int w = getFirstNeighbor(i);
while (w!=-1){
if (!isVisited[w]){
dfs(isVisited,w);
}
//如果w被访问过了
w=getNextNeighbor(i,w);
}
}
//dfs进行一个重载,遍历我们所有的节点,并进行dfs
public void dfs(){
//遍历所有节点 进行dfs
for (int i=0;i<getNumOfVertex();i++){
if (!isVisited[i]){
dfs(isVisited,i);
}
}
}
//对一个节点进行广度优先遍历
private void bfs(boolean[] isVisited,int i){
int u; //表示头结点的下标
int w; //邻接点的下标
//队列,记录节点访问的顺序
LinkedList queue = new LinkedList();
//访问节点
System.out.println(getValueByIndex(i)+"=>");
//标记为已经访问
isVisited[i]=true;
//将节点加入队列
queue.addLast(i);
while (!queue.isEmpty()){
//取出队列头
u = (Integer)queue.removeFirst();
//得到第一个邻节点的下标w
w=getFirstNeighbor(u);
while (w!=-1){
//是否访问过
if (!isVisited[w]){
System.out.println(getValueByIndex(w)+"=>");
//标记已经访问
isVisited[w]=true;
//入队列
queue.addLast(w);
}
//以u为前驱点找w后面的下一个邻接点
w = getNextNeighbor(u,w);//体现广度优先
}
}
}
//遍历所有的节点进行广度
public void bfs(){
for (int i = 0;i<getNumOfVertex();i++){
if (!isVisited[i]){
bfs(isVisited,i);
}
}
}
//返回节点的个数
public int getNumOfVertex(){
return vertexList.size();
}
//得到边的数目
public int getNumOfEdges(){
return numOfEdges;
}
//返回节点i对应的数据
public String getValueByIndex(int i){
return vertexList.get(i);
}
//插入顶点
public void insertVertex(String vertex){
vertexList.add(vertex);
}
//返回v1和v2的权值
public int getWeight(int v1,int v2){
return edges[v1][v2];
}
//显示图对应的矩阵
public void showGraph(){
for (int[] link:edges){
System.out.println(Arrays.toString(link));
}
}
//添加边
//v1表示第一个顶点下标 v2表示第二个顶点下标 weight0还是1
public void insertEdge(int v1,int v2,int weight){
edges[v1][v2] = weight;
edges[v2][v1] = weight;
numOfEdges++;
}
}