提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
Druid简介:
Apache Druid是一个实时分析型数据库,旨在对大型数据集进行快速的查询分析("OLAP"查询)。Druid最常被当做数据库来用以支持实时摄取、高性能查询和高稳定运行的应用场景,同时,Druid也通常被用来助力分析型应用的图形化界面,或者当做需要快速聚合的高并发后端API,Druid最适合应用于面向事件类型的数据。
Druid通常应用于以下场景:
点击流分析(Web端和移动端)
网络监测分析(网络性能监控)
服务指标存储
供应链分析(制造类指标)
应用性能指标分析
数字广告分析
商务智能 / OLAP
Druid的核心架构吸收和结合了数据仓库、时序数据库以及检索系统)的优势,其主要特征如下:
列式存储,Druid使用列式存储,这意味着在一个特定的数据查询中它只需要查询特定的列,这样极地提高了部分列查询场景的性能。另外,每一列数据都针对特定数据类型做了优化存储,从而支持快速的扫描和聚合。
可扩展的分布式系统,Druid通常部署在数十到数百台服务器的集群中,并且可以提供每秒数百万条记录的接收速率,数万亿条记录的保留存储以及亚秒级到几秒的查询延迟。
大规模并行处理,Druid可以在整个集群中并行处理查询。
实时或批量摄取,Druid可以实时(已经被摄取的数据可立即用于查询)或批量摄取数据。
自修复、自平衡、易于操作,作为集群运维操作人员,要伸缩集群只需添加或删除服务,集群就会在后台自动重新平衡自身,而不会造成任何停机。如果任何一台Druid服务器发生故障,系统将自动绕过损坏。 Druid设计为7*24全天候运行,无需出于任何原因而导致计划内停机,包括配置更改和软件更新。
不会丢失数据的云原生容错架构,一旦Druid摄取了数据,副本就安全地存储在深度存储介质(通常是云存储,HDFS或共享文件系统)中。即使某个Druid服务发生故障,也可以从深度存储中恢复您的数据。对于仅影响少数Druid服务的有限故障,副本可确保在系统恢复时仍然可以进行查询。
用于快速过滤的索引,Druid使用CONCISE或Roaring压缩的位图索引来创建索引,以支持快速过滤和跨多列搜索。
基于时间的分区,Druid首先按时间对数据进行分区,另外同时可以根据其他字段进行分区。这意味着基于时间的查询将仅访问与查询时间范围匹配的分区,这将大大提高基于时间的数据的性能。
近似算法,Druid应用了近似count-distinct,近似排序以及近似直方图和分位数计算的算法。这些算法占用有限的内存使用量,通常比精确计算要快得多。对于精度要求比速度更重要的场景,Druid还提供了精确count-distinct和精确排序。
摄取时自动汇总聚合,Druid支持在数据摄取阶段可选地进行数据汇总,这种汇总会部分预先聚合您的数据,并可以节省大量成本并提高性能。
Github地址:https://github.com/alibaba/druid/
一、DruidDataSource 基本配置参数如下
二、配置数据源
1、添加上 Druid 数据源依赖。
<!-- https://mvnrepository.com/artifact/com.alibaba/druid -->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>druid</artifactId>
<version>1.1.21</version>
</dependency>
2、切换数据源;之前已经说过 Spring Boot 2.0 以上默认使用 com.zaxxer.hikari.HikariDataSource 数据源,但可以 通过 spring.datasource.type 指定数据源。
spring:
datasource:
username: root
password: 123456
url: jdbc:mysql://localhost:3306/springboot?serverTimezone=UTC&useUnicode=true&characterEncoding=utf-8
driver-class-name: com.mysql.cj.jdbc.Driver
type: com.alibaba.druid.pool.DruidDataSource # 自定义数据源
3、数据源切换之后,在测试类中注入 DataSource,然后获取到它,输出一看便知是否成功切换;
4、切换成功!既然切换成功,就可以设置数据源连接初始化大小、最大连接数、等待时间、最小连接数 等设置项;可以查看源码
spring:
datasource:
username: root
password: 123456
#?serverTimezone=UTC解决时区的报错
url: jdbc:mysql://localhost:3306/springboot?serverTimezone=UTC&useUnicode=true&characterEncoding=utf-8
driver-class-name: com.mysql.cj.jdbc.Driver
type: com.alibaba.druid.pool.DruidDataSource
#Spring Boot 默认是不注入这些属性值的,需要自己绑定
#druid 数据源专有配置
initialSize: 5
minIdle: 5
maxActive: 20
maxWait: 60000
timeBetweenEvictionRunsMillis: 60000
minEvictableIdleTimeMillis: 300000
validationQuery: SELECT 1 FROM DUAL
testWhileIdle: true
testOnBorrow: false
testOnReturn: false
poolPreparedStatements: true
#配置监控统计拦截的filters,stat:监控统计、log4j:日志记录、wall:防御sql注入
#如果允许时报错 java.lang.ClassNotFoundException: org.apache.log4j.Priority
#则导入 log4j 依赖即可,Maven 地址:https://mvnrepository.com/artifact/log4j/log4j
filters: stat,wall,log4j
maxPoolPreparedStatementPerConnectionSize: 20
useGlobalDataSourceStat: true
connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=500
5、导入Log4j 的依赖
<!-- https://mvnrepository.com/artifact/log4j/log4j -->
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.17</version>
</dependency>
6、现在需要程序员自己为 DruidDataSource 绑定全局配置文件中的参数,再添加到容器中,而不再使用 Spring Boot 的自动生成了;我们需要 自己添加 DruidDataSource 组件到容器中,并绑定属性;
package com.kuang.config;
import com.alibaba.druid.pool.DruidDataSource;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import javax.sql.DataSource;
@Configuration
public class DruidConfig {
/*
将自定义的 Druid数据源添加到容器中,不再让 Spring Boot 自动创建
绑定全局配置文件中的 druid 数据源属性到 com.alibaba.druid.pool.DruidDataSource从而让它们生效
@ConfigurationProperties(prefix = "spring.datasource"):作用就是将 全局配置文件中
前缀为 spring.datasource的属性值注入到 com.alibaba.druid.pool.DruidDataSource 的同名参数中
*/
@ConfigurationProperties(prefix = "spring.datasource")
@Bean
public DataSource druidDataSource() {
return new DruidDataSource();
}
}
7、去测试类中测试一下;看是否成功!
@SpringBootTest
class SpringbootDataJdbcApplicationTests {
//DI注入数据源
@Autowired
DataSource dataSource;
@Test
public void contextLoads() throws SQLException {
//看一下默认数据源
System.out.println(dataSource.getClass());
//获得连接
Connection connection = dataSource.getConnection();
System.out.println(connection);
DruidDataSource druidDataSource = (DruidDataSource) dataSource;
System.out.println("druidDataSource 数据源最大连接数:" + druidDataSource.getMaxActive());
System.out.println("druidDataSource 数据源初始化连接数:" + druidDataSource.getInitialSize());
//关闭连接
connection.close();
}
}
输出结果 :可见配置参数已经生效!
三、配置Druid数据源监控
Druid 数据源具有监控的功能,并提供了一个 web 界面方便用户查看,类似安装 路由器 时,人家也提供了一个默认的 web 页面。
所以第一步需要设置 Druid 的后台管理页面,比如 登录账号、密码 等;配置后台管理;
//配置 Druid 监控管理后台的Servlet;
//内置 Servlet 容器时没有web.xml文件,所以使用 Spring Boot 的注册 Servlet 方式
@Bean
public ServletRegistrationBean statViewServlet() {
ServletRegistrationBean bean = new ServletRegistrationBean(new StatViewServlet(), "/druid/*");
// 这些参数可以在 com.alibaba.druid.support.http.StatViewServlet
// 的父类 com.alibaba.druid.support.http.ResourceServlet 中找到
Map<String, String> initParams = new HashMap<>();
initParams.put("loginUsername", "admin"); //后台管理界面的登录账号
initParams.put("loginPassword", "123456"); //后台管理界面的登录密码
//后台允许谁可以访问
//initParams.put("allow", "localhost"):表示只有本机可以访问
//initParams.put("allow", ""):为空或者为null时,表示允许所有访问
initParams.put("allow", "");
//deny:Druid 后台拒绝谁访问
//initParams.put("kuangshen", "192.168.1.20");表示禁止此ip访问
//设置初始化参数
bean.setInitParameters(initParams);
return bean;
}
配置完毕后,我们可以选择访问 :http://localhost:8080/druid/login.html
进入之后
配置 Druid web 监控 filter 过滤器
//配置 Druid 监控 之 web 监控的 filter
//WebStatFilter:用于配置Web和Druid数据源之间的管理关联监控统计
@Bean
public FilterRegistrationBean webStatFilter() {
FilterRegistrationBean bean = new FilterRegistrationBean();
bean.setFilter(new WebStatFilter());
//exclusions:设置哪些请求进行过滤排除掉,从而不进行统计
Map<String, String> initParams = new HashMap<>();
initParams.put("exclusions", "*.js,*.css,/druid/*,/jdbc/*");
bean.setInitParameters(initParams);
//"/*" 表示过滤所有请求
bean.setUrlPatterns(Arrays.asList("/*"));
return bean;
}
平时在工作中,按需求进行配置即可,主要用作监控!
总结
了解DruidDataSource 基本配置参数,Druid的介绍。