- 博客(218)
- 收藏
- 关注
原创 使用DeepSeek建立一个智能聊天机器人0.14
实现自动调节API节点的功能,我们可以在每次请求失败时尝试下一个API节点,而不是立即抛出异常。这样可以确保在当前节点不可用时,系统能够自动切换到下一个可用的节点。get_response函数:在请求失败时继续尝试下一个API节点,直到所有节点都尝试过为止。process_response函数:捕获并处理所有异常,确保用户界面不会因异常而崩溃。这样,当一个API节点不可用时,程序会自动尝试下一个节点,从而提高系统的可用性和稳定性。
2025-02-19 16:09:13
421
原创 使用DeepSeek建立一个智能聊天机器人0.13
为了将配置文件的内容直接整合到代码中,我们将配置信息硬编码到代码中,而不是从外部文件读取。通过这种方式,代码变得更加自包含,同时仍然保留了从外部配置文件读取和保存配置的功能。这样,用户可以选择是否使用默认配置,或者手动管理配置文件。虽然配置文件路径不再需要,但代码中仍然保留了 os.path.join 的用法,以确保在不同操作系统上处理路径的一致性。代码仍然保留了从外部配置文件读取配置的功能,以便用户可以手动加载和保存配置。如果环境变量未设置,代码将使用 DEFAULT_CONFIG 中的默认值。
2025-02-19 13:35:04
318
原创 使用DeepSeek建立一个智能聊天机器人0.12
这些对话框在不同操作系统上的表现也有所不同,但 tkinter.filedialog 已经处理了大部分跨平台的问题。消息框和文件对话框:使用 tkinter.messagebox 和 tkinter.filedialog 的标准方法,确保在不同操作系统上的表现一致。路径处理:使用 os.path.join 来构建配置文件路径,确保在不同操作系统上都能正确处理路径。线程处理:threading 模块在不同操作系统上的行为是一致的,因此不需要特别处理。1.API_KEY: 你的DeepSeek API密钥。
2025-02-16 13:11:59
428
原创 使用DeepSeek建立一个智能聊天机器人0.11
通过这些改进,你的智能聊天机器人将更加健壮,能够更好地管理和切换多个API节点,同时提供更多的配置选项,增强其智能框架和算法能力。1.将上述 config.json 内容复制到一个名为 config.json 的文件中。3.API_NODES: 一个包含多个API节点URL的列表,用于在请求失败时进行切换。3.确保 API_KEY 和 API_NODES 中的URL是有效的。2.DEFAULT_API_URL: 默认的API节点URL。:增强对多个API节点的管理和切换逻辑,确保高可用性。
2025-02-14 13:47:25
268
原创 使用DeepSeek建立一个智能聊天机器人0.1
我对代码进行进一步的完善,增加更多的节点连接及功能运用,并确保配置文件 config.json 的内容更加丰富和详细。以下是完善后的代码和 config.json 文件内容。完善后的代码config.json文件内容解释:API_KEY: 你的DeepSeek API密钥。DEFAULT_API_URL: 默认的API节点URL。API_NODES: 一个包含多个API节点URL的列表,用于在请求失败时进行切换。MAX_TOKENS: 每次请求生成的最大token数。TIMEOUT: 请求的超
2025-02-14 13:46:35
505
原创 使用DeepSeek建立一个智能聊天机器人0.09
增加自动连接功能并支持多个节点连接,我们在代码中引入一个配置文件来管理多个API节点,并在启动时自动选择可用的节点。DEFAULT_API_URL: 这是默认的API节点URL,通常是你最常用的API节点。API_NODES: 一个包含多个API节点URL的列表,用于在请求失败时进行切换。多节点支持:从配置文件中读取多个API节点,并在请求失败时自动切换到下一个节点。确保 API_KEY 和 API_NODES 中的URL是有效的。DEFAULT_API_URL: 默认的API节点URL。
2025-02-13 14:12:04
1442
原创 使用DeepSeek建立一个智能聊天机器人0.08
使用更安全的方式来存储和读取API密钥:可以考虑使用加密的方式存储API密钥,或者使用环境变量管理工具如 python-dotenv 来管理环境变量。增加错误处理和日志记录:增强错误处理机制,确保程序在遇到问题时能够提供详细的错误信息,并记录日志以供调试。日志记录:虽然这里没有直接添加日志记录功能,但可以通过 chat_log 提供详细的错误信息,便于调试。增强配置文件的管理:提供更多的配置选项,例如不同的模型选择、请求超时时间等。增强错误处理:增加了对请求异常和响应解析异常的处理。
2025-02-13 13:59:47
383
原创 使用DeepSeek建立一个智能聊天机器人0.07
进一步完善获取API密钥和DeepSeek的API端点,我们可以添加更多的错误处理和默认值设置,确保程序在各种情况下都能正常运行。同时,我们还可以提供一个更友好的用户界面,以便用户可以轻松地设置和查看配置信息。增加了一个“加载配置”按钮,方便用户在不修改代码的情况下更改API密钥和API端点。添加了对配置文件读取错误的处理,确保程序在文件不存在或格式错误时能够继续运行。如果配置文件不存在或格式错误,显示警告信息,并使用默认值。如果环境变量和配置文件均未设置,使用默认的API端点。
2025-02-12 16:00:31
306
原创 使用DeepSeek建立一个智能聊天机器人0.06
进一步完善获取API密钥和DeepSeek的API端点,我们可以添加一些错误处理和默认值设置,以确保即使在环境变量未设置的情况下,程序也能正常运行。此外,我们还可以提供一个简单的配置文件选项,以便用户可以在不修改代码的情况下更改API密钥和API端点。以下是完善后的代码:完善后的代码strstr。
2025-02-12 15:51:00
872
原创 使用DeepSeek建立一个智能聊天机器人0.05
为了使这个应用更加完善、快速、灵活和高效,我们做以下几个方面的改进:国际化:确保所有的文本都显示为中文。API 密钥和 API 端点:使用环境变量或配置文件来管理敏感信息,避免硬编码在代码中。性能优化:通过异步请求提高响应速度,避免阻塞主线程。用户界面:增加一些用户友好的功能,如自动滚动到最新消息、输入提示等。str。
2025-02-12 08:55:56
673
原创 使用DeepSeek建立一个智能聊天机器人0.04
我们进一步增强聊天机器人的对话功能,使其更加个性化和灵活。我们将添加一些额外的功能,如记忆用户的对话历史、提供更丰富的用户输入处理、以及更友好的用户界面。str。
2025-02-12 08:42:00
384
原创 使用DeepSeek建立一个智能聊天机器人0.03
这将启动一个带有中文界面的聊天机器人,用户可以在输入框中输入消息并点击“发送”按钮,与DeepSeek进行对话。所有界面元素和提示信息都将显示为中文,提供更好的用户体验。将智能聊天机器人0.02进一步完善代码,确保所有界面元素和提示信息都显示为中文。将窗口标题设置为“DeepSeek 聊天机器人”。在错误处理部分,将错误信息显示为中文。将发送按钮的文本设置为“发送”。
2025-02-11 16:23:54
333
原创 使用DeepSeek建立一个智能聊天机器人0.02
Tkinter是Python的标准GUI库,适合快速开发简单的桌面应用。这将启动一个带有图形界面的聊天机器人,用户可以在输入框中输入消息并点击“发送”按钮,与DeepSeek进行对话。调用get_response函数获取DeepSeek的响应,并显示在聊天记录中。这个函数负责向DeepSeek API发送请求,并返回模型生成的响应。DEEPSEEK_API_URL设置为DeepSeek的API端点。scrolledtext:用于创建带有滚动条的文本区域。tkinter:用于创建GUI。
2025-02-11 16:21:33
272
原创 使用DeepSeek建立一个智能聊天机器人
要使用DeepSeek建立一个智能聊天机器人的Python脚本,首先需要确保你已经安装了DeepSeek的相关库。DeepSeek是由阿里云开发的多模态预训练模型,可以用于多种自然语言处理任务,包括文本生成、对话等。以下是一个简单的示例,展示如何使用DeepSeek创建一个基本的聊天机器人。这个例子假设你已经有一个有效的API密钥,并且能够通过阿里云访问DeepSeek服务。步骤 1: 安装必要的库首先,你需要安装requests库来发送HTTP请求到DeepSeek API。
2025-02-11 16:07:43
864
原创 监测音量分贝Python 编写的简单程序
下面是一个用 Python 编写的简单程序,用于监测音量分贝。这个程序使用 pyaudio 库来捕获音频数据,并使用 numpy 库来计算音量分贝。捕获 KeyboardInterrupt 异常,允许用户通过按 Ctrl+C 停止程序。程序将开始监测麦克风输入的音量分贝,并实时打印结果。进入无限循环,读取音频数据,计算RMS值并转换为分贝,打印结果。计算均方根(RMS),用于表示音频信号的强度。FORMAT:采样位数,这里使用16位整数。RATE:采样率,44100 Hz。打开音频流,设置参数。
2025-02-10 12:06:40
426
原创 饮水00.1
该程序使用Tkinter库创建一个图形用户界面(GUI),允许用户输入每次饮水的水量,并显示当天的总饮水量。添加饮水量:点击“添加饮水量”按钮后,输入的水量将被添加到记录中,并更新总饮水量。保存记录:点击“保存记录”按钮后,当前的饮水记录将被保存到一个JSON文件中。加载记录:点击“加载记录”按钮后,可以从一个JSON文件中加载之前的饮水记录。重置记录:点击“重置记录”按钮后,将清空当前的饮水记录和总饮水量。可以随时保存当前的饮水记录到文件,或从文件中加载之前的记录。点击“重置记录”按钮可以清空所有记录。
2025-02-05 16:22:37
473
原创 夸父计步器0.03
数据结构:使用字典 self.data 来存储步数、心率和脉搏的数据。数据操作:在添加、保存、加载和重置数据时,同时处理步数、心率和脉搏。数据存储:在现有的步数列表基础上,增加心跳和脉搏的数据存储。图表展示:在现有步数趋势图的基础上,增加心跳和脉搏的趋势图。这样,你的应用就可以同时记录和显示用户的步数、心率和脉搏了。图表展示:在趋势图中分别展示了步数、心率和脉搏的变化趋势。功能实现:实现添加、保存、加载和显示心跳及脉搏的功能。用户界面更新:添加新的输入字段用于输入心跳和脉搏。
2025-02-05 08:59:07
199
原创 夸父计步器0.02
该程序不仅允许用户输入步数、显示总步数、保存步数数据到文件以及从文件中读取步数数据,还增加了日志记录、数据可视化等功能。add_step():从输入框获取步数并添加到步数列表中,更新总步数显示,并记录日志。load_steps():从文件中加载步数数据,更新步数列表和总步数显示,并记录日志。reset_steps():重置步数数据,清空步数列表和总步数显示,并记录日志。显示步数趋势图:点击“显示步数趋势图”按钮,显示步数数据的趋势图。保存步数:点击“保存步数”按钮,选择文件保存步数数据。
2025-01-25 15:59:28
754
原创 夸父计步器代码0.01
该程序允许用户输入步数、显示总步数、保存步数数据到文件以及从文件中读取步数数据。add_step():从输入框获取步数并添加到步数列表中,更新总步数显示。load_steps():从文件中加载步数数据,更新步数列表和总步数显示。reset_steps():重置步数数据,清空步数列表和总步数显示。保存步数:点击“保存步数”按钮,选择文件保存步数数据。加载步数:点击“加载步数”按钮,选择文件加载步数数据。输入步数:在输入框中输入步数,点击“添加步数”按钮。重置步数:点击“重置步数”按钮,清空步数数据。
2025-01-25 15:54:27
149
原创 BERT的中文问答系统73
修订内容修复 train_model_for_type 方法中的 file_path 问题:确保在 train_model_for_type 方法中正确处理 file_path 的路径。添加 on_closing 方法:确保在关闭窗口时释放资源。优化 get_specific_answer 方法:确保在没有匹配项时返回更友好的消息。修复 mark_correct 和 mark_incorrect 方法中的 history 索引问题:确保在标记正确和不正确时正确处理 history 列表。优化 co
2025-01-23 16:04:38
635
原创 BERT的中文问答系统72
修订与完善内容错误修正:日志配置:确保日志文件路径正确,并在启动时设置日志。数据加载:处理数据加载失败的情况,避免程序崩溃。模型加载:确保模型加载时不会因为路径问题导致失败。训练过程:修复训练过程中可能的错误,如数据加载失败、模型保存失败等。多线程:确保多线程操作不会导致UI卡顿。文件路径:确保所有文件路径的正确性和存在性。功能完善:日志记录:增加更多的日志记录点,便于调试和监控。用户交互:增加更多的用户交互提示,如数据收集、模型训练等。模型选择:优化模型选择逻辑,确保选择正确的模型。数
2025-01-23 16:04:16
513
原创 BERT的中文问答系统71
修订与完善内容错误修正:日志配置:确保日志文件路径正确,并在启动时设置日志。数据加载:处理数据加载失败的情况,避免程序崩溃。模型加载:确保模型加载时不会因为路径问题导致失败。训练过程:修复训练过程中可能的错误,如数据加载失败、模型保存失败等。多线程:确保多线程操作不会导致UI卡顿。文件路径:确保所有文件路径的正确性和存在性。功能完善:日志记录:增加更多的日志记录点,便于调试和监控。用户交互:增加更多的用户交互提示,如数据收集、模型训练等。模型选择:优化模型选择逻辑,确保选择正确的模型。数
2025-01-23 13:55:57
433
原创 BERT的中文问答系统70
修订与完善内容错误修正:日志配置:确保日志文件路径正确,并在启动时设置日志。数据加载:处理数据加载失败的情况,避免程序崩溃。模型加载:确保模型加载时不会因为路径问题导致失败。训练过程:修复训练过程中可能的错误,如数据加载失败、模型保存失败等。多线程:确保多线程操作不会导致UI卡顿。功能完善:日志记录:增加更多的日志记录点,便于调试和监控。用户交互:增加更多的用户交互提示,如数据收集、模型训练等。模型选择:优化模型选择逻辑,确保选择正确的模型。数据收集:增加数据收集的提示和验证,确保数据的有
2025-01-22 10:36:23
357
原创 BERT的中文问答系统69
使用说明:启动程序:运行脚本后,会启动一个图形界面。输入问题:在“问题”输入框中输入您的问题,然后点击“获取回答”按钮,羲和将为您提供答案。评价回答:如果您认为回答准确,请点击“准确”按钮;如果不准确,请点击“不准确”按钮。查看历史记录:点击“查看历史记录”按钮可以查看之前的聊天记录。保存历史记录:点击“保存历史记录”按钮可以将聊天记录保存到文件。训练模型:点击“训练模型”或“重新训练模型”按钮可以对模型进行训练或重新训练。评估模型:点击“评估模型”按钮可以评估模型的准确率。使用说明:点击“
2025-01-22 10:03:43
1014
原创 BERT的中文问答系统68
完善后的代码以下是完善后的代码,主要增加了自动完成数据集收集的功能,并在GUI中添加了相应的按钮和逻辑。完善的内容自动完成数据集收集:新增collect_data方法,用于收集特定类型的问题和答案。在create_widgets方法中为每个模型类型按钮添加数据收集功能。数据收集线程:使用threading.Thread来确保数据收集过程不会阻塞主界面。数据收集对话框:使用simpledialog.askstring来弹出对话框,让用户输入问题和答案。数据保存:将收集到的数据保存
2025-01-19 14:18:55
399
原创 BERT的中文问答系统67
功能完善自动完成数据集收集: 通过点击特定模型类型的按钮,自动完成数据集收集及模型训练保存。GUI界面: 完善了GUI界面,包括日期选择、历史记录查看、保存历史记录等功能。日志记录: 配置了日志记录,方便调试和追踪。运行方法确保安装了所有必要的依赖库,如 transformers, torch, tkinter, requests, beautifulsoup4, jsonlines 等。将代码保存为一个 .py 文件,例如 xihua_chatbot.py。运行该文件:python xihu
2025-01-16 16:46:36
399
原创 BERT的中文问答系统66
完善BERT的中文问答系统65后的代码简述异常处理:增加了更多的异常处理,确保程序在遇到错误时能够优雅地退出或提示用户。多线程:使用 threading 模块处理耗时操作,避免阻塞主界面。配置文件管理:优化了配置文件的读取和写入,确保配置文件的完整性和安全性。日志记录:增强了日志记录功能,记录更多详细的日志信息,便于调试和维护。用户反馈:增加了更多的用户反馈机制,如进度条、提示信息等,提高用户体验。模型保存与加载:优化了模型的保存和加载过程,确保模型的完整性和可恢复性。数据加载:优化了数据加
2025-01-16 16:44:06
472
原创 BERT的中文问答系统65
完善BERT的中文问答系统64后的代码简述异常处理:增加了更多的异常处理,确保程序在遇到错误时能够优雅地退出或提示用户。多线程:使用 threading 模块处理耗时操作,避免阻塞主界面。配置文件管理:优化了配置文件的读取和写入,确保配置文件的完整性和安全性。日志记录:增强了日志记录功能,记录更多详细的日志信息,便于调试和维护。用户反馈:增加了更多的用户反馈机制,如进度条、提示信息等,提高用户体验。模型保存与加载:优化了模型的保存和加载过程,确保模型的完整性和可恢复性。数据加载:优化了数据加
2025-01-15 10:35:31
988
原创 BERT的中文问答系统64
完善BERT的中文问答系统63后的代码简述异常处理:增加了更多的异常处理,确保程序在遇到错误时能够优雅地退出或提示用户。多线程:使用 threading 模块处理耗时操作,避免阻塞主界面。配置文件管理:优化了配置文件的读取和写入,确保配置文件的完整性和安全性。日志记录:增强了日志记录功能,记录更多详细的日志信息,便于调试和维护。用户反馈:增加了更多的用户反馈机制,如进度条、提示信息等,提高用户体验。模型保存与加载:优化了模型的保存和加载过程,确保模型的完整性和可恢复性。数据加载:优化了数据加
2025-01-15 10:33:26
530
原创 BERT的中文问答系统63
完善简述异常处理:增加了更多的异常处理,确保程序在遇到错误时能够优雅地退出或提示用户。多线程:使用 threading 模块处理耗时操作,避免阻塞主界面。配置文件管理:优化了配置文件的读取和写入,确保配置文件的完整性和安全性。日志记录:增强了日志记录功能,记录更多详细的日志信息,便于调试和维护。用户反馈:增加了更多的用户反馈机制,如进度条、提示信息等,提高用户体验。模型保存与加载:优化了模型的保存和加载过程,确保模型的完整性和可恢复性。数据加载:优化了数据加载过程,确保数据的完整性和正确性。
2025-01-13 16:44:14
770
原创 BERT的中文问答系统62
完善方向及改进点异常处理:增加更多的异常处理,确保程序在遇到错误时能够优雅地退出或提示用户。多线程:对于耗时操作(如模型训练、网络请求等),使用多线程或异步处理,避免阻塞主界面。配置文件管理:优化配置文件的读取和写入,确保配置文件的完整性和安全性。日志记录:增强日志记录功能,记录更多详细的日志信息,便于调试和维护。用户反馈:增加更多的用户反馈机制,如进度条、提示信息等,提高用户体验。模型保存与加载:优化模型的保存和加载过程,确保模型的完整性和可恢复性。数据加载:优化数据加载过程,确保数据的完整
2025-01-13 11:51:44
595
原创 伏羲0.19(文生图)
简述完善内容异常处理:增加对文件读写、模型加载等过程中的异常处理,确保程序在遇到错误时能够提供详细的错误信息。在数据加载、模型训练、生成多模态数据等关键步骤中增加异常捕获和日志记录。模型训练能力:优化模型训练过程,增加更多的日志记录和中间结果保存,以便于监控训练过程。支持使用多个GPU进行分布式训练,提高训练效率。图形用户界面优化:增加进度条和提示信息,提高用户体验。优化界面布局,使其更加直观和易用。代码简化与优化:重构代码结构,使其更加模块化和简洁。使用更高效的数据处理和模型训练方法。G
2025-01-13 09:11:13
385
原创 伏羲0.18(文生图)
简述完善内容异常处理:增加更多的异常处理,确保在文件读写、模型加载等过程中出现错误时能够提供详细的错误信息。日志记录:优化日志记录,确保关键操作都有日志输出,便于调试和监控。配置文件检查:在加载配置文件后,增加对配置文件内容的检查,确保必要的配置项存在且有效。模型训练和生成的分离:将模型训练和生成多模态数据的功能分离,确保每个功能模块独立且易于维护。图形用户界面优化:增加进度条和提示信息,提高用户体验。自动化测试:增加更多的测试用例,确保模型的各个部分都能正常工作。完善后的代码说明异常处理
2025-01-13 09:10:22
233
原创 伏羲0.15-1(文生图)
以上代码涵盖了从配置文件加载、数据加载、数据清洗、文本预处理、数据增强、风格迁移、特征提取、颜色抖动、文本编码器、图像生成器、视频生成器、音频生成器、判别器、模型定义、模型加载、图像保存、视频保存、音频保存、数据集类、模型训练、图像生成、图形用户界面、输出项目目录及所有文件、数据加密、模型解释性、可视化注意力机制、自动化测试等多个方面的内容。确保了模型的训练、生成、保存、使用的完整性和功能性。以下是对现有代码的进一步完善,包括模型定义、方法、函数、算法以及GUI的设计。
2025-01-13 09:09:51
145
原创 伏羲1.0试用版(文生图)
涵盖了从配置文件加载、数据加载、数据清洗、文本预处理、数据增强、风格迁移、特征提取、颜色抖动、文本编码器、图像生成器、视频生成器、音频生成器、判别器、模型定义、模型加载、图像保存、视频保存、音频保存、数据集类、模型训练、图像生成、图形用户界面、输出项目目录及所有文件、数据加密、模型解释性、可视化注意力机制、自动化测试等多个方面的内容。确保了模型的训练、生成、保存、使用的完整性和功能性。将上述代码保存为 text_to_multimodal.py,然后在命令行中运行 python text_to_multi
2025-01-13 09:09:17
753
原创 BERT的中文问答系统61
改进和完善后的BERT的中文问答系统60代码,涵盖了错误处理、性能优化、用户体验、功能增强、安全性、可扩展性和模块化、以及文档和注释等方面:改进点总结错误处理和健壮性:数据加载错误处理:在加载数据时,增加了详细的错误提示。模型加载错误处理:在加载模型时,增加了详细的错误提示。网络请求错误处理:在进行网络请求时,增加了网络异常和超时处理。性能优化:数据预处理:目前没有使用多线程或多进程,但可以通过引入 concurrent.futures 或 multiprocessing 来进一步优化。用户体验
2025-01-02 15:17:43
641
原创 伏羲0.17(文生图)
修订和完善的内容代码结构优化:将代码分为多个部分,每个部分都有明确的注释,便于理解和维护。优化了函数和类的命名,使其更具描述性和可读性。错误处理:增加了更多的异常处理,确保在文件不存在或读取错误时能够提供明确的错误信息。在关键步骤中添加了日志记录,以便在运行过程中更好地跟踪和调试。代码简化:简化了一些冗余的代码,例如在 generate_images_batch 中的图像、视频和音频保存部分。使用 with 语句来确保文件操作的安全性。图形用户界面优化:优化了 GUI 的布局和功能,使其更
2025-01-02 14:30:37
249
原创 伏羲0.16(文生图)
本次修订内容错误处理:在多个函数中增加了异常处理,确保在文件不存在或读取错误时能够提供明确的错误信息。代码优化:简化了一些冗余的代码,例如在 generate_images_batch 中的图像、视频和音频保存部分。使用 with 语句来确保文件操作的安全性。注释和文档:增加了更多的注释,帮助理解每个函数的功能和参数。优化了函数的文档字符串,使其更清晰。日志记录:增加了更多的日志记录,以便在运行过程中更好地跟踪和调试。图形用户界面:优化了 GUI 的布局和功能,使其更加用户友好。增加了进度条
2024-12-31 09:35:24
361
原创 伏羲0.15(文生图)
涵盖了从配置文件加载、数据加载、数据清洗、文本预处理、数据增强、风格迁移、特征提取、颜色抖动、文本编码器、图像生成器、视频生成器、音频生成器、判别器、模型定义、模型加载、图像保存、视频保存、音频保存、数据集类、模型训练、图像生成、图形用户界面、输出项目目录及所有文件、数据加密、模型解释性、可视化注意力机制、自动化测试等多个方面的内容。确保了模型的训练、生成、保存、使用的完整性和功能性。以下是将完善后的代码整合到一个 Python 文件中的内容。你可以将其保存为 text_to_multimodal.py 并
2024-12-31 08:45:46
399
原创 伏羲0.14(文生图)项目的data文件的格式举例
描述: 包含文本和对应图像路径的数据集文件。描述: 包含需要生成多模态数据的文本列表。描述: 存储生成的图像、视频和音频文件。images/: 存储生成的图像文件。videos/: 存储生成的视频文件。audios/: 存储生成的音频文件。描述: 存储训练好的模型权重文件。
2024-12-26 10:47:38
166
BERT的中文问答系统52,羲和聊天机器人是一个基于BERT的多模态对话系统,支持多种领域的问答 该项目包括数据加载、模型训练、评估和GUI界面
2024-12-05
羲和聊天机器人是一个基于BERT模型的多领域聊天机器人,支持中文和英文 该项目包括数据处理、模型训练、模型评估和图形用户界面(GUI)等功能(分文档)
2024-12-05
羲和聊天机器人是一个基于BERT的中文问答系统,支持用户提问并获取回答
2024-11-17
一个基于BERT的中文聊天机器人32
2024-11-17
羲和聊天机器人,初步训练的大模型试用版(请使用前根据代码安装好库和预训练模型位置)
2024-11-13
计算机安全监控系统(Python)
2024-10-21
本项目实现了一个基于FPGA的无人机控制系统 该系统包括与IMU接口、实现PID控制器和驱动电机的模块
2024-10-15
羲和数据集清洗器003
2024-10-14
在 Excel 中实现相同和不同工作表中第7行及第7行之后的单元格内容相同时可以相互链接关联
2024-10-13
基于BERT的聊天机器人,名为“羲和” 它可以通过用户输入的问题,给出“羲和”或“零”的回答
2024-10-11
一个 JSONL 文件的检查和修订工具
2024-10-10
BERT的中文问答系统项目说明文件
2024-10-09
这个代码实现了一个具备反爬机制、安全管理能力、反侦查能力和转移注意力能力的Python爬虫
2024-10-08
一个基于BERT的中文聊天机器人羲和03
2024-10-08
使用bert-base-chinese聊天机器人羲和的代码02
2024-10-08
昂达H81BTC主板+i74790k+win10+使用特斯拉M40 24G 问题
2024-11-01
TA创建的收藏夹 TA关注的收藏夹
TA关注的人