【面试经典 150 | 图】被围绕的区域

本文介绍了如何使用深度优先搜索(DFS)和广度优先搜索(BFS)解决LeetCode130题『被围绕的区域』,通过标记网格边缘的O字符并扩展至相邻的O,最终替换未标记的O为X。文章详细解析了两种方法的代码实现和复杂度分析。
摘要由CSDN通过智能技术生成

写在前面

本专栏专注于分析与讲解【面试经典150】算法,两到三天更新一篇文章,欢迎催更……

专栏内容以分析题目为主,并附带一些对于本题涉及到的数据结构等内容进行回顾与总结,文章结构大致如下,部分内容会有增删:

  • Tag:介绍本题牵涉到的知识点、数据结构;
  • 题目来源:贴上题目的链接,方便大家查找题目并完成练习;
  • 题目解读:复述题目(确保自己真的理解题目意思),并强调一些题目重点信息;
  • 解题思路:介绍一些解题思路,每种解题思路包括思路讲解、实现代码以及复杂度分析;
  • 知识回忆:针对今天介绍的题目中的重点内容、数据结构进行回顾总结。

Tag

【图】【深搜】【广搜】


题目来源

130. 被围绕的区域


解题思路

标记为 A

我们从网格的边缘(第一行、最后一行、第一列、最后一列)的 ‘O’ 字符出发将所有与之相连的 ‘O’ 都标记成一种全新的字符,不妨标记为 ‘A’。

这个过程可以通过深搜,广搜以及并查集的方法实现。

最后遍历修改后的网格,将没有被修改的 ‘O’ 更改成字符 ‘X’。因为在 标记为 A 的过程中,有部分 ‘O’ 没有被修改,说明这部分的 ‘O’ 被 ‘X’ 包围,因为可以直接修改成 ‘X’。

方法一:深搜

代码

class Solution {
private:
    const int dirs[4][2] = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
public:
	void solve(vector<vector<char>>& board) {
		int m = board.size(), n = board[0].size();
		for (int i = 0; i < m; ++i) {
			dfs(board, m, n, i, 0);
			dfs(board, m, n, i, n - 1);
		}

		for (int i = 1; i < n - 1; ++i) {
			dfs(board, m, n, 0, i);
			dfs(board, m, n, m - 1, i);
		}

		for (int i = 0; i < m; ++i) {
			for (int j = 0; j < n; ++j) {
				if (board[i][j] == 'A') {
					board[i][j] = 'O';
				}
				else if (board[i][j] == 'O') {
					board[i][j] = 'X';
				}	
			}
		}

	}

	void dfs(vector<vector<char>>& board, int m, int n, int i, int j) {
		if (i < 0 || i >= m || j < 0 || j >= n || board[i][j] != 'O')
			return;

		board[i][j] = 'A';

        for (int k = 0; k < 4; ++k) {
            int nx = i + dirs[k][0];
            int ny = j + dirs[k][1];
            dfs(board, m, n, nx, ny);
        }
	}
};

复杂度分析

时间复杂度: O ( m n ) O(mn) O(mn) m m m n n n 分别为网格的行数和列数。

空间复杂度: O ( m n ) O(mn) O(mn)

方法二:广搜

代码

class Solution {
private:
	vector<int> direction{ -1, 0, 1, 0, -1 };
public:
	void solve(vector<vector<char>>& board) {
		int m = board.size(), n = board[0].size();
		queue<pair<int, int>> que;
		for (int i = 0; i < m; ++i) {
			if (board[i][0] == 'O') {
				que.emplace(i, 0);
				board[i][0] = 'A';
			}

			if (board[i][n - 1] == 'O') {
				que.emplace(i, n-1);
				board[i][n - 1] = 'A';
			}
		}

		for (int i = 1; i < n - 1; ++i) {
			if (board[0][i] == 'O') {
				que.emplace(0, i);
				board[0][i] = 'A';
			}

			if (board[m - 1][i] == 'O') {
				que.emplace(m - 1, i);
				board[m - 1][i] = 'A';
			}
		}

		while (!que.empty()) {
			int x = que.front().first, y = que.front().second;
			que.pop();
			for (int k = 0; k < 4; ++k) {
				int r = x + direction[k], c = y + direction[k+1];
				if (r < 0 || r >= m || c < 0 || c >= n || board[r][c] != 'O')
					continue;
				que.emplace(r, c);
				board[r][c] = 'A';
			}
		}
		
		for (int i = 0; i < m; ++i) {
			for (int j = 0; j < n; ++j) {
				if (board[i][j] == 'A') {
					board[i][j] = 'O';
				}
				else if (board[i][j] == 'O') {
					board[i][j] = 'X';
				}
			}
		}
	}
};

复杂度分析

时间复杂度: O ( m n ) O(mn) O(mn) m m m n n n 分别为网格的行数和列数。

空间复杂度: O ( m n ) O(mn) O(mn)


写在最后

如果您发现文章有任何错误或者对文章有任何疑问,欢迎私信博主或者在评论区指出 💬💬💬。

如果大家有更优的时间、空间复杂度的方法,欢迎评论区交流。

最后,感谢您的阅读,如果有所收获的话可以给我点一个 👍 哦。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wang_nn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值