写在前面
本专栏专注于分析与讲解【面试经典150】算法,两到三天更新一篇文章,欢迎催更……
专栏内容以分析题目为主,并附带一些对于本题涉及到的数据结构等内容进行回顾与总结,文章结构大致如下,部分内容会有增删:
- Tag:介绍本题牵涉到的知识点、数据结构;
- 题目来源:贴上题目的链接,方便大家查找题目并完成练习;
- 题目解读:复述题目(确保自己真的理解题目意思),并强调一些题目重点信息;
- 解题思路:介绍一些解题思路,每种解题思路包括思路讲解、实现代码以及复杂度分析;
- 知识回忆:针对今天介绍的题目中的重点内容、数据结构进行回顾总结。
Tag
【矩阵】【动态规划】
题目来源

解题思路
方法一:动态规划
定义状态
使用 dp[i][j]
表示以 (i, j)
为右下角,且只包含 1 的正方形的边长最大值。
转移关系
对于每个位置 (i, j)
,检查矩阵中该位置的值:
- 如果该位置的值为 1,则
dp[i][j] = 0
,因为当前位置不可能在由 1 组成的正方形中; - 如果该位置的值为 1,则
dp[i][j]
的值由其上方、左方和左上方的三个相邻位置的 dp 值决定。具体而言,转移方程为:
d p [ i ] [ j ] = m i n ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] , d p [ i − 1 ] [ j − 1 ] ) + 1 dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1 dp[i][j]=min(dp[i−1][j],dp[i][j−1],dp[i−1][j−1])+1
base case
以矩阵的第一行和第一列中的任意位置为正方形右下角的大正方形边张只能为 1,此时 dp[i][j] = 1
。
最后返回
我们在更新 dp[i][j]
时记录正方形的最大边长,最后返回最大边长对应的最大面积。
代码
class Solution {
public:
int maximalSquare(vector<vector<char>>& matrix) {
int m = matrix.size(), n = matrix[0].size();
int maxSize = 0;
vector<vector<int>> dp(m, vector<int>(n));
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (matrix[i][j] == '1') {
if (i == 0 || j == 0) {
dp[i][j] = 1;
}
else {
dp[i][j] = min(dp[i-1][j], min(dp[i][j-1], dp[i-1][j-1])) + 1;
}
maxSize = max(maxSize, dp[i][j]);
}
}
}
return maxSize * maxSize;
}
};
复杂度分析
时间复杂度: O ( m n ) O(mn) O(mn), m m m 和 n n n 分别为矩阵的行数和列数。
空间复杂度: O ( m n ) O(mn) O(mn)。
写在最后
如果您发现文章有任何错误或者对文章有任何疑问,欢迎私信博主或者在评论区指出 💬💬💬。
如果大家有更优的时间、空间复杂度的方法,欢迎评论区交流。
最后,感谢您的阅读,如果有所收获的话可以给我点一个 👍 哦。