7-3 N个数求和

本题的要求很简单,就是求N个数字的和。麻烦的是,这些数字是以有理数分子/分母的形式给出的,你输出的和也必须是有理数的形式。


输入格式:
输入第一行给出一个正整数N(≤100)。随后一行按格式a1/b1 a2/b2 ...给出N个有理数。题目保证所有分子和分母都在长整型范围内。另外,负数的符号一定出现在分子前面。


输出格式:
输出上述数字和的最简形式 —— 即将结果写成整数部分 分数部分,其中分数部分写成分子/分母,要求分子小于分母,且它们没有公因子。如果结果的整数部分为0,则只输出分数部分。

输入样例1

5
2/5 4/15 1/30 -2/60 8/3

输入样例1

3 1/3

思路:

  1. 先把输入的分子分母都另外存在两个数组里,方便后面运算;
  2. 求出所有分母的最小公倍数sum(消除法);
  3. 将所有分子都遍历一遍,求出通分后的分子之和ans;
  4. 判断结果是否是整数,是就直接输出,否就继续判断分子分母关系;
  5. 由k来判断分子分母关系,注意!!k可能为负数,因为k=ans/sum,ans可以为负数,所以输出时要输出k的绝对值形式;
  6. 将最后的结果再求最小公因数,然后分子分母同除于它;注意,在传入参数的适合要传分子的绝对值形式,不然sum可能为负数;

代码:

#include<bits/stdc++.h>
using namespace std;
int arr1[105];
int arr2[105];
int test(int x,int y)
{
    while(y!=0)
    {
    int t=x%y;
    x=y;
    y=t;
    };
    return x;
}
int main()
{
    int a,a1;
    int b,b1;
    int n,sum;
    cin>>n;
    scanf("%d/%d",&a1,&b1);
    sum=b1;
    arr1[0]=a1;
    arr2[0]=b1;
    for(int i=1;i<n;i++)
    {
        scanf("%d/%d",&a,&b);
        arr1[i]=a;
        arr2[i]=b;
        sum=sum*b/test(sum,b);
    }
    int ans=0;
    for(int i=0;i<n;i++)
    {
        int x=sum/arr2[i];
        arr1[i]*=x;
        ans+=arr1[i];
    }
    int k=ans/sum;
    ans=ans-k*sum;
    k=abs(k);
    if(k&&!ans)
        printf("%d",k);
    else
    {
    int y=test(abs(ans),sum);
    cout<<y<<endl;
    ans/=y;
    sum/=y;
    if(k)
    {
        printf("%d %d/%d",k,ans,sum);
    }
    if(!k)
        printf("%d/%d",ans,sum);
     }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值