本题的要求很简单,就是求N个数字的和。麻烦的是,这些数字是以有理数分子/分母的形式给出的,你输出的和也必须是有理数的形式。
输入格式:
输入第一行给出一个正整数N(≤100)。随后一行按格式a1/b1 a2/b2 ...给出N个有理数。题目保证所有分子和分母都在长整型范围内。另外,负数的符号一定出现在分子前面。
输出格式:
输出上述数字和的最简形式 —— 即将结果写成整数部分 分数部分,其中分数部分写成分子/分母,要求分子小于分母,且它们没有公因子。如果结果的整数部分为0,则只输出分数部分。
输入样例1
5
2/5 4/15 1/30 -2/60 8/3
输入样例1
3 1/3
思路:
- 先把输入的分子分母都另外存在两个数组里,方便后面运算;
- 求出所有分母的最小公倍数sum(消除法);
- 将所有分子都遍历一遍,求出通分后的分子之和ans;
- 判断结果是否是整数,是就直接输出,否就继续判断分子分母关系;
- 由k来判断分子分母关系,注意!!k可能为负数,因为k=ans/sum,ans可以为负数,所以输出时要输出k的绝对值形式;
- 将最后的结果再求最小公因数,然后分子分母同除于它;注意,在传入参数的适合要传分子的绝对值形式,不然sum可能为负数;
代码:
#include<bits/stdc++.h>
using namespace std;
int arr1[105];
int arr2[105];
int test(int x,int y)
{
while(y!=0)
{
int t=x%y;
x=y;
y=t;
};
return x;
}
int main()
{
int a,a1;
int b,b1;
int n,sum;
cin>>n;
scanf("%d/%d",&a1,&b1);
sum=b1;
arr1[0]=a1;
arr2[0]=b1;
for(int i=1;i<n;i++)
{
scanf("%d/%d",&a,&b);
arr1[i]=a;
arr2[i]=b;
sum=sum*b/test(sum,b);
}
int ans=0;
for(int i=0;i<n;i++)
{
int x=sum/arr2[i];
arr1[i]*=x;
ans+=arr1[i];
}
int k=ans/sum;
ans=ans-k*sum;
k=abs(k);
if(k&&!ans)
printf("%d",k);
else
{
int y=test(abs(ans),sum);
cout<<y<<endl;
ans/=y;
sum/=y;
if(k)
{
printf("%d %d/%d",k,ans,sum);
}
if(!k)
printf("%d/%d",ans,sum);
}
return 0;
}