1. 建模的场景描述
1.1 水质净化厂
水质净化厂是一种专门用于处理和净化污水的设施,旨在减少污染、保护环境和改善水质。与污水处理厂相比,水质净化厂更注重于提高处理后的水质标准,使其达到或超过环境标准,通常用于改善河流、湖泊等自然水体的水质。水质净化厂采用各种先进的处理技术和工艺,如生物处理、物理化学处理等,以确保处理后的水符合特定的环境标准,甚至达到可以直接排放或再利用的标准。这些设施通常设计为全地下式或花园式,以减少对周边环境的影响,并通过各种措施减少臭气外溢,确保运行过程中的环保性。如下图为深圳市坂雪岗水质净化厂。
水质净化厂采用的工艺不尽相同,下面以目前比较典型的“A2/O+MBR工艺”为例来说明,如下:
A2/O+MBR膜工艺(见下图)以MBR膜池代替传统二沉池,减少池容,节约用地,同时增强抗冲击负荷能力,减少剩余污泥排放。出水采用负压抽吸式,污水经超滤膜过滤后,出水效果好。
以上述水质净化厂为例,其“A2/O生化池”及“MBR膜池”的配套设计为:
- A2/O生化池:生化池2组,单组设计规模为6xl04m3Al。单池有效容积为27075m3,有效水深为7.10m,总HRT为10.83h,其中厌氧区1.33h、缺氧区3.7h、好氧区5.8h,容积负荷为0.474kgBOD5/(m3.d),污泥负荷为0.06kgBOD5/(kgMLSS.d),实际运行混合液MLSS为8g/L,泥龄为19.3d,好氧区-缺氧区回流比为200%-300%,缺氧区-厌氧区回流比为100%~200%。厌氧区设潜水推流器4台,P=5.7kW,0=2500mm,缺氧区设水推流器12台,P=5.7kW,Z)=2500mm。好氧区设板式曝气器,并设置精确曝气系统,最大气水比为5.8:1。
- MBR膜池及配套设备间:膜池共18格,可独立运行,MBR膜孔径为0.2pm,采用外压式中空纤维中衬膜,平均通量为15.78L/(h.m2),共安装MBR膜组件180套,配套产水泵19台,配套反洗泵2台(1用1备),单台功率为18.5kW,另配套有空气压缩系统、加药系统等。
1.2 现状及需求
1.2.1 生化段曝气能耗高
当今社会,水资源匮乏的问题越来越突出,污水处理是解决水资源匮乏的有效手段之一。膜生物反应器(MBR)工艺作为近年来的一种新型污水工艺,较传统的活性污泥法来说,具有占地面积小,产水水质高、剩余污泥少、自控程度高等优势,在用地资源日益紧张的今天,MBR工艺在全国各地的污水处理厂均得到了一定的应用。但同时,由于其基础造价较高、膜污染及能耗较高等问题,其进一步应用也得到了了一定的限制。以采用厌氧-缺氧-好氧生物脱氮除磷(A-A-O)耦合膜生物反应器工艺(A2O-MBR)的某污水厂为例,通过对各工艺段能耗进行对比分析,得出其生化段曝气能耗占全厂能耗的比例高达49%。从能量转换的角度来看,其实质是以能耗换取水质。
1.2.2 精准曝气控制的需求
水质净化厂运营过程中,曝气量需根据进出水水质等参数实时进行调节,以保障出水水质达标。而在实际生产过程中,由于影响因素多,目前尚不能对曝气量进行精确控制。希望通过机器学习模型的应用预测曝气量,以指导实际生产。
1.2.3 TDengine的用武之地
通过对采用A2O-MBR工艺的某污水厂运行过程中的历史数据,利用大数据建模,形成可供推理的智能曝气数理模型,通过算法迭代计算出最优曝气量。结合污水处理厂工艺流程,通过数学建模,建立污水厂精准曝气机理模型,实现生化处理系统运行效果的优化控制,在保障污水厂出水水质满足行标的前提下,采用智能化、自动化手段降低能耗,有效解决实际问题,助力市政污水处理行业低碳发展。
显而易见,时序数据的采集、存储、管理、分析,是实现上述的大数据建模的根基。TDengine 是一款专为物联网、工业互联网等场景设计并优化的大数据平台,其核心模块是高性能、集群开源、云原生、极简的时序数据库。它能安全高效地将大量设备、数据采集器每天产生的高达 TB 甚至 PB 级的数据进行汇聚、存储、分析和分发,对业务运行状态进行实时监测、预警,提供实时的商业洞察。同时,TDengine 基于预训练 LLM 的时序数据 AI 分析工具TDgpt,可以帮助提升数据分析效率和决策准确性。
如下图,是某厂商的“水务行业工业互联网平台”的技术架构。其中,TDengine可以轻松胜任平台层中与时序数据相关的内容。
2. 建模的方案描述
2.1 数据集参考
数据来源于使用A2O-MBR工艺的污水厂,生化池好氧段曝气生产环境。在生化池的好氧工艺段,我们通过控制曝气量,来改变水中的溶解氧(DO),将污水中的氨氮(NH4)转化成硝氮(NO3),同时将水中的有机物(COD)降解。
数据说明
1.部分特征中的0值并不代表实际值。
2.特征在邻近时序内数值未发生改变,通常是因为数据采集频率原因,并非生产环境中未发生显著改变。
3.北生化池和南生化池在生产过程中不会互相影响。(引用备注:据部分参赛选手反馈,实际上北生化池和南生化池有互相影响)
特征名 | 特征含义 | 单位 |
time | 时间 | |
JS_NH3 | 进水氨氮 | mgN-NH₄/L |
CS_NH3 | 出水氨氮 | mgN-NH₄/L |
JS_TN | 进水总氮 | mgN/L |
CS_TN | 出水总氮 | mgN/L |
JS_LL | 进水流量 | m³/h |
CS_LL | 出水流量 | m³/h |
MCCS_NH4 | 膜池出水_NH4 | mgN-NH₄/L |
MCCS_NO3 | 膜池出水_NO3 | mgN/L |
JS_COD | 进水COD | mg/L |
CS_COD | 出水COD | mg/L |
JS_SW | 进水水温 | ℃ |
CS_SW | 出水水温 | ℃ |
B_HYC_NH4 | 北组好氧池氨氮 | mgN-NH₄/L |
B_HYC_XD | 北组好氧池硝氮 | mgN/L |
B_HYC_MLSS | 北组好氧池MLSS | mgSS/L |
B_HYC_JS_DO | 北组好氧池进水DO | mgO₂/L |
B_HYC_DO | 北组好氧池出水DO | mgO₂/L |
B_CS_MQ_SSLL | 北组好氧池明渠出水口瞬时流量 | m3/h |
B_QY_ORP | 北组缺氧池ORP | mV |
N_HYC_NH4 | 南组好氧池氨氮 | mgN-NH₄/L |
N_HYC_XD | 南组好氧池硝氮 | mgN/L |
N_HYC_MLSS | 南组好氧池MLSS | mgSS/L |
N_HYC_JS_DO | 南组好氧池进水DO | mgO₂/L |
N_HYC_DO | 南组好氧池出水DO | mgO₂/L |
N_CS_MQ_SSLL | 南组好氧池明渠出水口瞬时流量 | m3/h |
N_QY_ORP | 南组缺氧池ORP | mV |
Label1 | 北组-支管流量(曝气量) | m3/h |
Label2 | 南组-支管流量(曝气量) | m3/h |
2.2 数据建模
以上述水质净化厂为例,构筑物组合体采用半地下式结构,顶部加盖建设市政公园,中间层为操作层,下部为水池。分为预处理区、生化处理区、附属区。预处理区包括预沉砂池、粗格栅、进水提升栗房、细格栅、曝气沉砂池、速沉池。生化处理区包括精细格栅、A2/O生化池(有2组)、MBR膜池及膜池配套设备间、紫外线消毒池。附属区包括机修仓库、展厅、加药间、鼓风机房、配电间。
同时,还需要监测进出水的水质,查看运行效果。
因此,结合本例参考的数据集,将按照“进出水水质”、“A2/O生化池”(2组,即2个子表)、“膜池”创建超级表,进行建模。
2.2.1 进出水水质
超级表名s_water_quality
序号 | 字段 | 类型 | 描述 | 是否标签 |
1 | ts | TIMESTAMP | 原始采集时间 | |
2 | JS_NH3 | FLOAT | 进水氨氮 | |
3 | CS_NH3 | FLOAT | 出水氨氮 | |
4 | JS_TN | FLOAT | 进水总氮 | |
5 | CS_TN | FLOAT | 出水总氮 | |
6 | JS_LL | FLOAT | 进水流量 | |
7 | CS_LL | FLOAT | 出水流量 | |
8 | JS_COD | FLOAT | 进水COD | |
9 | CS_COD | FLOAT | 出水COD | |
10 | JS_SW | FLOAT | 进水水温 | |
11 | CS_SW | FLOAT | 出水水温 | |
12 | Station_ID | INT | (水厂)站号 | 是 |
2.2.2 A2/O生化池
超级表名s_A2O
序号 | 字段 | 类型 | 描述 | 是否标签 |
1 | ts | TIMESTAMP | 原始采集时间 | |
2 | HYC_NH4 | FLOAT | 好氧池氨氮 | |
3 | HYC_XD | FLOAT | 好氧池硝氮 | |
4 | HYC_MLSS | FLOAT | 好氧池MLSS | |
5 | HYC_JS_DO | FLOAT | 好氧池进水DO | |
6 | HYC_DO | FLOAT | 好氧池出水DO | |
7 | CS_MQ_SSLL | FLOAT | 好氧池明渠出水口瞬时流量 | |
8 | QY_ORP | FLOAT | 缺氧池ORP | |
9 | Aeration | FLOAT | 支管流量(曝气量),原数据集中的Lable1(北组)和Lable2(南组) | |
9 | Station_ID | INT | (水厂)站号 | 是 |
10 | Group_Name | VARCHAR(200) | (生化池)组名: 北组:north 南组:south | 是 |
注意,本例中有2组生化池,应创建2张子表。
2.2.3 MBR膜池
超级表名s_MBR
序号 | 字段 | 类型 | 描述 | 是否标签 |
1 | ts | TIMESTAMP | 原始采集时间 | |
2 | MCCS_NH4 | FLOAT | 膜池出水_NH4 | |
3 | MCCS_NO3 | FLOAT | 膜池出水_NO3 | |
4 | Station_ID | INT | (水厂)站号 | 是 |
2.3 查询应用
- 业务分析
- 查询当北组好氧池出现曝气操作时,当时的进出水水质
- 报表查询
通常需要等时间间隔查询,满足日报、月报、年报的需求
- SPC统计
需要配合完成SPC样本分组以及提供均值和标准差相关统计。SPC统计过程控制中很多数据都是平均值、方差的基础数据,包含历史过程统计和实时SPC统计分析
- 查询实时数据
快速查询当前的最新数据,重点强调从设备采集入库到查询的中间间隔时间
3. 建模的脚本和语句
3.1 建模语句
按上述建模方案创建超级表和子表
SQL |
3.2 数据写入
把整理好的CSV文件使用“数据写入”功能导入数据库中。
[见本文章资源]
3.3 查询脚本
- 业务分析
- 查询当出现北组好氧池曝气操作时,当时的进出水水质
SQL |
- 报表查询(步进、线性查询、断面查询)
以日报举例
- SPC
提供分组均值和方差统计
SQL |
对于单值移动极值控制图统计我们支持滑动窗口,更好满足业务需求
SQL |
- 实时展示
SQL |
SQL |
本文引用: 污水厂A2/O+MBR工艺:https://www.dowater.com/jishu/2020-12-28/1536410.html 2022年“深水云脑杯”智慧水务数据创新大赛:https://www.datafountain.cn/competitions/602 数据集train_dataset.csv:https://aistudio.baidu.com/datasetdetail/169443 |