顺序栈的入栈与出栈

前言

本文章介绍的是顺序栈的入栈与出栈的基本操作。

输入描述

整数n代表元素个数

n个元素

输出描述 

按出栈顺序输出站内元素

 操作过程

#include<iostream>
#include<fstream>
using namespace std;

//顺序栈定义
#define OK 1
#define ERROR 0
#define OVERFLOW -2
#define MAXSIZE  100//顺序栈存储空间的初始分配量
typedef int Status;
typedef char SElemType;

typedef struct {
SElemType *base;//栈底指针
SElemType *top;//栈顶指针
int stacksize;//栈可用的最大容量
} SqStack;
Status InitStack(SqStack &S);
Status Push(SqStack &S, SElemType e);
//Status Pop(SqStack &S, SElemType &e);
//算法3.1 顺序栈的初始化
Status InitStack(SqStack &S) {
//构造一个空栈S
S.base = new SElemType[MAXSIZE];//为顺序栈动态分配一个最大容量为MAXSIZE的数组空间
if (!S.base)
exit(OVERFLOW); //存储分配失败
S.top = S.base; //top初始为base,空栈
S.stacksize = MAXSIZE; //stacksize置为栈的最大容量MAXSIZE
return OK;
}

int main() {
SqStack s;
int n,i;
SElemType x,t;
InitStack(s);   //初始化顺序表
cin>>n;  //输入添加数据的个数

for(i=0;i<n;i++)  //循环压入栈
{
   cin>>x;
   Push(s,x);
}

while (Pop(s, t)) //循环出栈
{
cout << t <<endl;
}
return 0;
}

//算法 顺序栈的入栈
Status Push(SqStack &S, SElemType e) {
// 插入元素e为新的栈顶元素
if (S.top - S.base == S.stacksize)
return ERROR; //栈满
*(S.top++) = e; //元素e压入栈顶,栈顶指针加1
return OK;
}

//出栈
Status Pop(SqStack &S, SElemType &e){
    //判断栈是否为空
    if(S.top == S.base)
        return ERROR;
    //出栈
    else
        S.top = S.top - 1;
        e = *(S.top);
    return OK;
}

输入样例

4
A
B
C
D

输出样例 

D
C
B
A

总结

顺序栈的出栈与入栈相当于顺序表的反向输出和输入。顺序栈入栈要注意栈是否为满栈,出栈时要注意是否栈为空栈。

<think>嗯,用户现在想了解顺序栈算法的具体步骤指针移动规则。让我先回顾一下之前给用户的回答。之前已经详细解释了顺序栈的压操作,包括指针移动的逻辑、示例代码以及特殊情况处理。用户现在进一步询问算法的具体步骤,可能需要更详细的流程说明,或者代码层面的深分析。 首先,我需要确认用户的需求是否已经被之前的回答覆盖。在之前的回答中,已经分步骤说明了压操作的逻辑,包括指针移动顺序、满检查、元素存储等。但可能用户希望更详细的步骤拆解,或者想了解不同实现方式之间的差异。 查看用户提供的引用内容,引用[1]中的清空操作是将top设置为-1,引用[2]提到了初始化时top为-1,时指针加1,出栈时减1。这些信息需要整合到当前的回答中,确保一致性。用户可能还关心为什么初始化时top设为-1,这在之前的问题3中已经涉及,可能需要引用相关部分。 接下来,用户的问题集中在算法的详细步骤。我需要确保回答覆盖以下内容: 1. 满检查的必要性及实现方式。 2. 指针移动的具体方向顺序(先移动还是先存储数据)。 3. 元素存储的位置。 4. 可能的错误处理(如满时的返回或异常)。 5. 示例代码的展示,最好使用用户之前提到的语言(比如C语言)。 另外,用户之前的回答中提到了压时先移动指针,再存数据,而弹时先取数据再移动指针。需要保持逻辑的一致性,并解释这种设计的原因,比如避免指针越界或数据残留。 还需要考虑用户可能的疑问,例如为什么压要先移动指针,是否有其他实现方式(比如top初始化为0,指针指向下一个空位)。但根据引用[2],初始化时top为-1,所以必须按照先移动指针的方式操作,否则第一个元素的位置会是0,而top初始为-1,需要先加1再存储。 此外,需要结合代码示例详细说明每个步骤,确保用户能够理解代码实际操作步骤的对应关系。例如,在代码中,满检查如何实现,指针如何移动,元素如何存储。 可能还需要提到时间空间复杂度,但用户的问题集中在步骤指针移动,所以这部分可能不是重点,但可以简要提及。 最后,要生成的相关问题需要围绕操作展开,比如满处理策略、不同初始化的影响、动态扩容等,帮助用户进一步深学习。 总结,回答的结构应该包括: 1. 步骤的详细分解,每个步骤的作用顺序。 2. 指针移动规则的解释,结合初始化状态说明。 3. 代码示例及关键代码解释。 4. 特殊情况处理(满)。 5. 相关问题的延伸,促进用户深思考。</think>### 顺序栈算法的具体步骤及指针移动规则 顺序栈(压)操作是结构最核心的操作之一,其核心逻辑围绕 **顶指针(top)** 的移动元素存储展开。以下是详细步骤及规则: --- #### **一、算法的具体步骤** 1. **检查是否已满** - **目的**:防止数组越界(溢出)。 - **判断条件**:若顶指针 `top` 的值等于数组最大下标(即 `top == MAX_SIZE - 1`),则满,无法插[^2][^4]。 - **代码示例**: ```c if (top == MAX_SIZE - 1) { return ERROR; // 满,拒绝插 } ``` 2. **移动顶指针** - **方向**:向上移动(即 `top++`)。 - **规则**:**先移动指针,再存元素**。 - 若初始状态为 `top = -1`(空),移动后 `top = 0`,元素存 `data[0]`。 - 若当前顶在 `data[k]`,移动后 `top = k+1`,元素存 `data[k+1]`[^4][^2]。 3. **存储新元素** - **位置**:将元素赋值给 `data[top]`(移动后的指针指向的位置)。 - **操作**:`data[top] = x`。 4. **返回操作状态** - 若成功插,返回 `SUCCESS`;否则返回 `ERROR`。 --- #### **二、指针移动规则详解** - **初始状态**:`top = -1`(表示空)。 - **指针移动顺序**: - **必须“先移动指针,再存数据”**。 - **原因**:若先存数据后移动指针,会导致指针指向错误位置。例如,初始 `top = -1`,若直接存数据到 `data[0]` 再移动指针,指针将无法正确标记当前顶[^2]。 - **示例流程**(插元素 `x`): 1. 初始状态:`top = -1`(空)。 2. 检查未满 → 允许插。 3. `top++` → `top = 0`。 4. `data[0] = x`。 5. 顶指针此时指向 `data[0]`,表示中有1个元素。 --- #### **三、代码实现注释** ```c #define MAX_SIZE 100 // 的最大容量 typedef int DataType; // 元素类型 typedef struct { DataType data[MAX_SIZE]; int top; // 顶指针(初始为-1) } SeqStack; int push(SeqStack *S, DataType x) { // 1. 满检查 if (S->top == MAX_SIZE - 1) { printf("已满,无法插\n"); return ERROR; } // 2. 指针上移 S->top++; // 3. 存元素 S->data[S->top] = x; return SUCCESS; } ``` --- #### **四、关键问题解析** 1. **为什么必须“先移动指针”?** - 若初始 `top = -1`,直接存 `data[0]` 会导致 `top` 仍为 `-1`,后续操作无法正确追踪顶位置。因此,必须先移动指针到合法下标(如 `0`),再存储元素[^2][^5]。 2. **满的判定依据** - 数组下标从 `0` 开始,因此最大有效下标为 `MAX_SIZE - 1`。当 `top` 达到该值时,已无空闲位置[^4]。 3. **时间复杂度** - 操作仅需常数时间 $O(1)$,中元素数量无关。 --- #### **五、相关拓展问题** 1. **如果顶指针初始化为 `0`,算法会如何变化?** - 若 `top` 初始为 `0`(指向第一个空位),则时需 **先存数据,再移动指针**,规则当前实现相反。 2. **如何实现动态扩容的顺序栈?** - 当满时,申请更大的内存空间,复制原有数据,并更新 `MAX_SIZE`。此操作时间复杂度为 $O(n)$。 3. **满时有哪些处理策略?** - 直接报错(如本文代码)。 - 动态扩容(牺牲时间换空间)。 - 丢弃底元素(特定场景使用)[^4]。 --- 通过以上步骤规则,顺序栈操作能高效、安全地管理数据存储指针移动。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颜语凌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值