基于HEC-RAS及GIS的川西叠溪古滑坡堰塞湖溃决洪水重建
摘 要
青藏高原东南缘岷江上游地区地质环境条件十分复杂,滑坡堵江灾害及堰塞湖溃决事件频发,重建其灾害演化过程对于地区性防灾减灾和风险控制具有重要指导意义。以川西岷江上游叠溪古滑坡堰塞湖为研究对象,首先利用高精度DEM和ArcGIS软件重建了叠溪古堰塞湖的原始规模,其原始最大湖水面积为1.1×107 m2,相应的湖容量为2.9×109 m3;然后采用经验公式法和HEC-RAS一维水力学模型重建叠溪古堰塞湖溃决洪水的水力学特征。计算结果表明,HEC-RAS模拟的最大溃决洪水洪峰流量为73 060 m3/s,与经验公式法计算结果(74 500~76 800 m3/s,平均值76 000 m3/s)非常接近,误差小于5%。对应的最大洪水深度和流速分别为70.1 m和16.78 m/s,模拟河段的洪水淹没范围约为6.08 km2。综合误差分析推测的溃决洪峰流量误差范围为69 000~81 000 m3/s。叠溪古滑坡堰塞湖溃决洪水在世界范围内是十分罕见的,其最直接的影响是在下游数公里范围的河谷内形成大量带状或台阶状的溃坝堆积体和巨砾石堆积“阶地”,且这种影响仍延续至今,这与前人关于高能洪水水文特征和沉积特征的研究认识高度一致,证明本研究成果是非常可靠的。此外,本研究还表明,HEC-RAS一维水力模型可用于高山峡谷地区古滑坡堰塞湖溃决洪水重建研究,可为青藏高原东南缘岷江上游古环境重建和地貌演化提供参考。
关键词
古滑坡堰塞湖; 溃决洪水; 洪峰流量; HEC-RAS; 误差分析; 岷江上游
0 引 言
我国西南青藏高原东缘晚新生代以来新构造运动活跃,地震活动强烈,地质环境演化非常复杂[1-2]。这一地区江河峡谷密布,大型地质灾害(崩塌、滑坡及泥石流等)频发,极易发生堵江事件,形成堰塞湖[3⇓-5]。这些堰塞湖绝大多数形成于第四纪时期,受到国内外专家学者的广泛关注,对于研究青藏高原河流发育及山地环境演化意义重大[6⇓-8]。其中,由滑坡或崩滑灾害堵江形成的滑坡型堰塞湖在这一地区最为常见[9⇓⇓-12]。有些堰塞湖在形成后很短时间内就溃决消失,而有些堰塞湖则会存留数百年,甚至数千年之久[13⇓-15]。研究发现,在青藏高原东缘金沙江、岷江和大渡河等流域发育大量古堰塞湖[6,15⇓⇓⇓⇓⇓⇓⇓ -23],这些古堰塞湖绝大多数形成于地质历史时期,其形成和溃决过程对于地区性防灾减灾以及古环境演变研究意义重大。
堰塞湖溃决洪水反演是研究堰塞湖演化过程的热点,重点是估算最大溃决洪峰流量。国外学者对许多堰塞湖及河谷洪水开展了大量研究工作,提出很多计算溃决洪峰流量的经验方法[13,24⇓⇓⇓ -28]。此外,计算机数值技术的快速发展为古洪水的反演研究提供了很好的研究手段,涌现出很多洪水模拟软件和计算模型。其中,HEC-RAS水力模型起初主要用于天然河道和人工渠道一维水力学计算,鉴于其便捷性和功能性优势,在洪水模拟计算中得到广泛应用[29⇓⇓-32]。特别是在高山峡谷地区,径流通常沿河谷走向演进,方向单一,一维模型往往能得到比较理想的模拟结果[33]。目前,HEC-RAS水力模型多用于近现代河谷型山洪计算,对于古滑坡堰塞湖溃决洪水重建的研究却鲜有报道。
据前人研究,岷江上游叠溪古堰塞湖曾存在了数千年,形成大量古湖相沉积物,这些湖相沉积物至今仍保存完好[20,34 -35]。叠溪古堰塞湖在晚更新世晚期(约27 ka)发生了溃决,形成大规模溃决洪水事件,并在其下游河谷中堆积了大型混杂堆积物[36]。通过详细的野外考察,分别采用经验公式和ArcGIS软件、HEC-RAS水力模型及耦合插件HEC-GeoRAS重建了叠溪古堰塞湖的最大溃决洪峰流量,并对HEC-RAS模拟结果的灵敏度进行了分析,最后简要讨论了叠溪古堰塞湖溃决洪水的影响。本研究为分析类似堰塞湖溃决事件及岷江上游地区河流演化提供参考,对于青藏高原东部山地环境演化规律研究具有重要指示意义
1 研究区地质背景
岷江是长江水系的一条重要支流,其上游段位于青藏高原东缘川西高原地区,属于一、二阶梯过渡带,高程落差超过2 000 m(图1)。研究区所处的叠溪河段位于31.5°N—32.5°N和103.5°E—104.5°E之间,为深切型峡谷,河谷较狭窄,宽度一般不超过300 m,多呈U型,地形起伏较大,河流两岸小型峡谷分布较多,多呈山川相间式分布。研究区地质构造十分复杂,被“N—S向”地震带贯穿,受此影响,断裂构造很发育,如岷江断裂带和虎牙断裂(图1)。这些断裂构造带多为活动断裂,造成该地区地震活动频发,并引发次生地质灾害(崩塌、滑坡、泥石流等),其中不乏一些大型古地震活动[34]。河谷两侧山体基岩多为泥盆系、石炭—二叠系及三叠系变质岩,河床两侧地表广泛分布第四系松散堆积层[37]。
图1青藏高原东缘构造活动分布及研究区位置图
叠溪河谷段干旱现象较为严重,降雨稀少且多集中于夏季七至八月份,年均降雨量仅420 mm。岷江是研究区内全年性水系,年平均流量219.78亿m3,主要受大气降水补给。叠溪地区地表水主要是叠溪海子,为1933年叠溪地震引发山体滑坡堰塞岷江河道形成的堰塞湖,由上海子(大海子)和下海子(小海子)组成,总积水量为1.2亿m3[38]。
基于野外调查和遥感影像解译,古湖相沉积物、残留古滑坡坝体和溃坝堆积物在研究区内沿岷江从上游向下游依次展布。说明在这一地区曾发生过大型滑坡堰塞事件,形成一个大型古堰塞湖,其经历数千年的演化,在坝体上游形成厚层古湖相沉积物,溃决后在坝体下游堆积了大量溃坝堆积物。截至目前,叠溪古堰塞湖的湖相沉积物已受到许多学者的关注,并取得很多研究成果[20,34 -35]。此外,笔者也在前面的研究工作中对下游溃坝堆积物的沉积地貌特征进行了详细的介绍[36,39 -40]。本研究侧重于对叠溪古堰塞湖溃决洪水的重建,为研究堰塞湖溃决洪水演化规律和地区性防灾减灾提供参考。
2 堰塞湖溃决洪水反演方法简介
根据前人研究,天然堰塞湖溃决洪水水力学分析方法有两大类:经验方法和数值模拟方法。本研究综合采用了经验公式法和一维HEC-RAS数值模拟法重建了叠溪古堰塞湖溃决洪水。
2.1 经验方法
经验方法大多是比较简单的溃决洪水计算模型,主要是估算最大溃决洪峰流量。这些经验模型可分为线性回归方程、简易参数方程和水流能量方程。
线性回归方程是在统计已有堰塞湖溃决洪水事件的基础上,总结出堰塞湖溃决时水位高度(或水面降落高度)和堰塞湖积水量(湖水体积)与溃决洪峰流量之间的线性关系,从而得到线性回归方程[13,25⇓ -27]。由于这类方程只涉及水深和湖水体积两个参数,忽略了溃决洪水发生和演化阶段的基本水力学规律,很难对尚未发生溃决的堰塞湖进行预测[3,41]。这类方法已应用于冰川(冰碛)堰塞湖溃决洪水计算[42]。其中,一些方程也可用于滑坡堰塞湖溃决洪峰流量估算中[3,43],如Cenderelli线性回归方程[44]。
简易参数方程会考虑一些溃决洪水相关水力参数,如湖水面积和体积、堰塞湖几何形状、水深、溃口几何形状、溃决洪水传播时间及侵蚀率等,可用于分析溃决洪水的形成、溃决特征及估算最大洪峰流量[45-46],已经属于简易的物理模型,但这些计算参数获取十分困难。特别是对于古堰塞湖而言,缺少可靠的历史资料,很难通过简单的野外调查获取精确的计算参数。近年来,有些学者采用这类方法进行了堰塞湖溃决洪水方面的研究,如Dai等[3]采用Walder和O’Connor[26]的计算方程估算了我国西南地区大渡河1978年地震滑坡堰塞湖溃决洪水的最大洪峰流量,认为采用这种方法时,如果使用了过多不必要的计算参数,会造成计算结果偏高或者偏低。
水流能量方程是根据溃决洪水的水力特征,建立洪水搬运沉积物几何参数与洪水水流能量的关系式,来估算溃决洪峰流量,通常假设溃决洪水所搬运的最大粒径的沉积物代表了洪水水流的最大搬运动能[24]。Bradley和Mears[47]是最早使用这类方法的学者之一,他们根据美国科罗拉多州博尔德克里克河谷古洪水洪泛区内的最大砾石估算了古洪水的平均水深和流速。其后,Costa[24]对他们的工作进行了更进一步的拓展和深入,并系统总结了水流能量计算方法。水流能量方程是目前堰塞湖溃决洪水研究中应用较为广泛的一类方法。
2.2 数值模拟方法
近年来,随着计算机技术的发展,涌现出大量堰塞湖溃决洪水数值计算模型,可分为4类:(1)一维(1D)模型,如MIKE11模型、HEC-RAS水力模型(1D)等;(2)二维(2D)模型,如Flo2D软件、MIKE21等;(3)一维和二维耦合型模型;(4)三维(3D)模型,如Delft3D模拟软件等。
HEC-RAS(Hydraulic Engineering Center’s River Analysis System,USACE)是由美国工程兵团水利工程中心(US Army Corps of Engineers Hydraulic Engineering Center)开发的一维水力计算软件,可进行稳定流和非稳定流计算[48]。其中,溃坝模型可用于堰塞湖溃决洪水研究。HEC-GeoRAS是美国工程兵团水利工程中心(USACE)和美国环境系统研究所(US Environmental Systems Research Institute,Inc.,US ESRI)共同开发的ArcGIS扩展模块,是HEC-RAS与ArcGIS的数据接口,可在ArcGIS平台内对研究区DEM进行前处理,以得到HEC-RAS河道几何模型,大大减少工作量,提高了工作效率。使用该模型进行堰塞湖溃决洪水反演分析时,一般可分为五个步骤,如图2所示。
图2 HEC-RAS数值模型溃决洪水重建流程图
3 叠溪谷堰塞湖溃决洪水重建
3.1 原始古堰塞湖重建
在使用经验公式进行溃决洪水洪峰流量计算时,往往需要堰塞湖溃决前的几何形态,如湖水深度、水面面积、湖水体积等,因此,在进行叠溪古堰塞湖溃决洪水重建计算前要对其进行原始规模重建。
野外调查发现,叠溪古堰塞湖的湖相沉积物在坝体上游侧最远端出露位置为距离残留坝体约30 km远的岷江左岸(图3(a)),该处古湖相沉积物剖面中出现了河流相沉积物,具河湖二元沉积特征,推断其已经十分接近叠溪古堰塞湖的末端,再往上游也并未发现湖相沉积物的分布。该剖面顶部高程为2 355 m,因此本文以2 355 m作为原始叠溪古堰塞湖的湖水面高程。然后,利用分辨率为10 m的DEM,在ArcGIS平台中重建出古堰塞湖的原始湖水面面积为1.1×107 m2,相应的湖容量约为2.9×109 m3,如图4所示。
图3叠溪古滑坡堰塞湖沉积地貌特征
(a)永和村附近叠溪古堰塞湖末端湖相沉积物沉积地貌特征;(b)叠溪残留古滑坡坝体沉积地貌特征(据文献[36]修改)
图4叠溪古滑坡堰塞湖原始集水面积及湖容量重建(湖水面高程2 355 m)
3.2 经验方法估算结果
本研究分别采用线性回归方程和简易参数方程法估算叠溪古堰塞湖溃决洪水的最大洪峰流量,这些方法均已在滑坡堰塞湖溃决洪水研究中得到成功应用。
(1)线性回归方程[25,44]:
Qp=0.72Vw0.53
(1)
Qp=3.4V0.46
(2)
(2)简易参数方程[49]:
Qp=g0.5d2.5Qp*
(3)
公式(1)—(3)中:Qp为最大溃决洪峰流量,m3/s;d为堰塞湖溃决后湖水降落高度,m;V、Vw为溃决时湖水体积,m3;g为重力加速度,取9.8 m/s2;Qp*为洪峰流量常数,无量纲,根据Walder和O’Connor[49]研究中的图4曲线确定,本研究中取值为1.2。
根据野外调查,位于叠溪古镇较场村岷江左岸的残留古滑坡坝体顶部湖相沉积物最大高程约为2 302 m,原始堰塞湖水面高程为2 355 m,现今叠溪海子水面高程为2 122 m,因此原始堰塞坝体高度和取溃决时湖水降落高度分别为233 m和53 m。溃决时湖水体积(V、Vw)为2.9×109 m3。经计算,叠溪古堰塞湖溃决洪水的最大洪峰流量分别为74 500、76 600、76 800 m3/s,平均值约为76 000 m3/s。可看出,上述3种经验方法的计算结果差距不大,同属一个数量级。
3.3 HEC-RAS模拟结果
图5(a)为本研究建立的HEC-RAS几何模型。主河道及洪泛区的几何形状由DEM提取得到。河道横断面主要用于计算水面线高程;剖面线数量和间距取决于计算精度要求、剖面线的形状和河道的弯曲程度,且应使其尽量垂直于河道中心线。通常情况下剖面线间距为1~5倍河道宽度,而且过量的剖面线数量可能会使模型运行时出错,或者产生较大的计算误差。本研究所模拟的河段长度为7 615 m,涵盖了溃坝堆积物的出露范围(约5 km)[36,39 -40],绘制了41条剖面,剖面线平均间距约为190 m,在河流拐点位置稍密,而在平直河段加大间距。
图5HEC-RAS几何模型
(a)本研究建立的叠溪古堰塞湖溃决洪水反演HEC-RAS几何模型;(b)HEC-RAS软件界面几何模型示意图(单位:m)
在建立HEC-RAS几何模型时,另一项重要的工作就是确定粗糙度系数,即曼宁系数n,其取值会对计算结果产生很大影响,其影响大小会在下文中进行分析。《HEC-RAS水力参考手册4.0》[50](下文中简称为《手册》)中列出了曼宁系数n取值的影响因素,包括河道表面粗糙度、河道形状及走向、冲刷和沉积、植被、障碍物、水位和流量、季节变化、温度、悬浮物和推移质等,其中,河床和河岸物质的组成类型和形态以及河道的几何形状是最重要的两个影响因素[50]。《手册》中表3-1列出了不同土地利用类型的曼宁系数n经验值,供用户参考使用。此外,《手册》中表3-3还给出了收缩和膨胀系数的典型取值。由于叠溪古堰塞湖溃决洪水发生在距今2.7万年前[36,40],无法确定当时详细的土地利用类型,因此可根据以往经验分为河道和洪泛区两种,并根据《手册》中表3-1分别取值0.04和0.06;此外,根据《手册》中表3-3,收缩系数和膨胀系数的取值为0.1和0.3[50]。计算参数见表1。
表1 叠溪古堰塞湖溃决洪水反演HCE-RAS水力模型输入参数
图5(b)为HEC-RAS软件中的水力模型,其关键工作是确定最终洪峰流量所对应的水面高度。在以往的研究中,通常采用洪水堆积物的出露厚度或者历史记录的洪水痕迹作为已知洪水水面高度[29,31]。对于本研究而言,溃坝堆积物经过长期自然过程影响,已经被河流侵蚀及崩滑堆积物所覆盖,若以出露高度作为历史洪水高度将会产生较大误差,因此,本研究采用溃口附近残留古滑坡坝体顶部高程(约2 106 m)作为已知洪水高度[36,40],并利用溃坝堆积物出露高度进行校核。
经计算,叠溪古堰塞湖溃决洪水的最大洪峰流量为73 060 m3/s,与经验方法计算结果(平均值)比较接近,误差为3.87%。根据文献[38]记载,叠溪河段的年平均径流量约为700 m3/s,可见,当时的最大溃决洪峰流量是该河段年平均径流量的百余倍,如此大规模的古滑坡堰塞湖溃决洪水在世界范围内也是十分罕见的。
图6展示了最大洪峰流量为73 060 m3/s时的洪水水面高度及洪水流速。可以看出,最大、最小和平均水深分别为70.10 m、17.15 m和45.59 m。最小水深出现在模拟河段的拐角处,此处河道狭窄,相应地,该处洪水流速也比较高,为11.44m/s。总的来说,模拟河段的洪水流速很高,其值在4.00~16.79 m/s之间,且上、下段的流速高于中间段,因为中间段的河道相对较宽。此外,水深与流速之间存在着不明显的负相关关系,这与河道所处河谷段的地形地貌及河道几何形态相吻合,即:河流拐点、狭窄段流速大,水深较浅;而平直、宽阔河段洪水流速较慢,相应地水深较大。
图6HEC-RAS模拟的叠溪古堰塞湖溃决洪水水面高度及洪水流速
(a)溃决洪水水面高度;(b)溃决洪水流速
此外,利用ArcGIS和HEC-GeoRAS绘制出模拟河段的洪水淹没范围,如图7所示。可以看出,在最大洪峰流量73 060 m3/s的情况下,该河段的洪水淹没范围约为6.08 km2。
图7模拟段叠溪古堰塞湖溃决洪水的淹没范围
根据模拟结果可以将顾桥矿区松散层模拟剖面划分为中上部强非均质区和深部弱非均质区。在图3—图6的模拟结果对比中可以发现,在弱非均质区含水介质空间变异性小,介质的空间连续性大,在模拟剖面中表现为含水层或隔水层分布连续且完整。通过与原始水文地质剖面的对比,发现转移概率地质统计方法对于弱非均质的空间连续性模拟效果较好。而对于强非均质区,含水介质空间变异性较大,介质的空间连续性相对较弱,在模拟剖面中表现为含水层与隔水层在垂向和侧向的不连续发育。一般来说,转移概率地质统计方法作为一种随机模拟方法,对于强非均质区的模拟,在钻孔数据有限的情况下其模拟效果欠佳。但在顾桥矿区的含水介质模拟中,强非均质区的模拟结果与其在原始水文地质剖面中分布情况基本保持一致。这说明钻孔密度基本可以满足顾桥矿区含水介质在该尺度下准确模拟刻画的需求。
4 洪峰流量误差分析
4.1 HEC-RAS结果灵敏度分析
由HEC-RAS模型的建立过程可以看出,其计算结果受到许多不确定性因素的影响。本研究根据计算精度要求和前人研究成果,选取了6个灵敏度指标:洪水面高度、曼宁系数n、下游水力边界条件、横剖面数量、水流方向及DEM分辨率,对HEC-RAS计算结果进行不确定性(误差)分析。通过改变参数取值,得到新的洪峰流量数值,并与原最大洪峰流量值进行对比,计算其所产生的误差,以评估各参数对模拟结果的影响大小。详细的检验结果列于表2。
表2 叠溪古堰塞湖溃决洪水HEC-RAS模拟结果灵敏度分析
可以看出,6个参数对HEC-RAS计算结果的影响从大到小依次为:洪水面高度>曼宁系数>横剖面数量>下游水力边界条件>DEM分辨率>水流方向。洪水面高度变化几厘米就会造成洪峰流量很大的不确定性,可见,野外确定最大古洪水水面高度对于模拟结果至关重要。曼宁系数是一个对模拟结果总误差影响很大的因素,本研究中,其±10%的改变量就会对洪峰流量造成约±12%的误差。但是对于像叠溪古堰塞湖溃决洪水这样的历史洪水而言,很难对其进行精确地取值,绝大多数情况下还是依赖于建模者的工程经验或参考以往文献资料的研究成果。当增加一倍或减少一半(±50%)横截面数量时,洪峰流量值变化量约为15%,若考虑模拟结果总体误差,这一变化量的影响也是相对较大的。下游水力边界条件和DEM分辨率对模拟结果的影响很小,而径流方向的改变对结果没有任何影响。
4.2 溃决洪峰流量误差分析
分析结果见表3,可以看出,两个线性回归方程计算的洪峰流量相对理想误差范围和最大可接受误差分别约为5%和10%,而简易参数方程计算的洪峰流量相对理想误差范围和最大可接受误差分别约为15%和25%,后者高出前者约2倍。其原因是:一方面是由于两类方法计算过程的复杂程度不同而引起的。虽然简易参数方程(公式(3))看起来很简单,而且只受一个计算参数(d)的影响,但其计算过程中需要考虑其他很多影响因素和限制条件[49],因此对参数取值的变化比较敏感。另一方面是受计算参数本身的影响。对于堰塞湖库容量(亿m3)这种数量级的参数而言,±10%和±20%的改变量对其自身的量级没有太大的影响,因此对整体的计算结果影响也较小。而(坝体)溃决高度只有几十米,量级很小,其很小的改变量就会产生较大的计算误差。
表3 经验方法溃决洪峰流量误差分析
图9 叠溪河谷段溃坝堆积物的分布特征((b)——(d))及巨硕石粒径统计(a)位置
但从两类计算方法的理论基础和适用性而言,简易参数方程法考虑了更多的影响因素和适用条件,因此,相比于简单的线性回归分析更为合理。
图8为上述经验方法和HEC-RAS溃决洪峰流量误差分析综合对比。图中灰色阴影为本研究在综合分析经验方法和HEC-RAS数值模拟计算结果的基础上,推测的叠溪古滑坡堰塞湖溃决洪峰流量误差范围,为69 000~81 000 m3/s。
图8 叠溪古堰塞湖溃决洪峰流量误差分析
5 关于古滑坡堰塞湖对环境和地貌影响的讨论
但从两类计算方法的理论基础和适用性而言,简易参数方程法考虑了更多的影响因素和适用条件,因此,相比于简单的线性回归分析更为合理。
图8为上述经验方法和HEC-RAS溃决洪峰流量误差分析综合对比。图中灰色阴影为本研究在综合分析经验方法和HEC-RAS数值模拟计算结果的基础上,推测的叠溪古滑坡堰塞湖溃决洪峰流量误差范围,为69 000~81 000 m3/s。类似的滑坡型堰塞湖溃决洪水事件在我国西南地区的长江上游各支流中很普遍,如大渡河1786年滑坡堰塞湖溃决洪水,其影响范围达1 400 km,对下游地区造成了严重的生命财产损失[3]。还有近期为大家所熟知的金沙江上游白格村的两次相继发生的大型滑坡堵江事件(2018年10月11日及11月3日),第一次为自然溃决,第二次为人工引溃,其堰塞湖洪水已影响至我国云南省丽江市境内,影响范围超过500 km,导致下游地区数万名群众搬迁撤离,对下游路桥、房舍、农田等造成严重毁坏[51⇓⇓-54]。可见,在这些高山峡谷区,一旦发生大规模堰塞湖溃决事件,将会对下游很大范围形成灾害影响。因为在高山峡谷地区,洪水演进方向比较单一,一般只能沿河谷方向行进,不像在平原低山地区那样,演进过程中会有很多泄洪节点。叠溪古堰塞湖溃决洪水发生在距今2.7万年前的地质历史时期[40],其最大的影响是对地区性地质环境的改造,如地形地貌、气候及水文等。其中,地形地貌方面的影响最为直接、明显。溃决洪水向下游演进中,将坝体物质及河流两侧坡体和河床物质搬运至下游,并逐渐沉积下来,在河道中形成溃坝堆积物。在叠溪古滑坡残留坝体下游侧,分布着大量呈带状或台阶状的溃坝堆积体,以粗粒径砾石成分居多,其中出露最大的一个堆积体剖面超过150 m,高约25 m[40]。在河床及剖面中分布着许多大型巨砾石(图9),其最大直径为1.5~6.0 m,被高能溃决洪水搬运至下游数公里以外。本文统计了河道不同位置处的巨砾石最大粒径,列于表4,统计位置如图9所示。这些砾石一般呈次磨圆-磨圆,与棱角状原位崩滑块石一起堆积在河道中,形成类似于台阶状的堆积“阶地”,一些高于河床的台阶已经被当地居民开垦成耕地或者果园。此外,大量巨砾石堆积于河床中将河床抬高,在一定程度上影响河流的纵坡降,也对河流走向进行了一定程度的改造(图9)。这些洪水沉积地貌特征与前人关于高能洪水沉积现象的认识高度一致[55-56],表明本研究成果是很可靠的。由此可见,虽然经过数万年的侵蚀改造,但叠溪古堰塞湖溃决洪水在地形地貌方面的影响仍延续至今。目前,在我国西南青藏高原东缘地区,也有一些类似的相关报道[4-5,15,18,57⇓ -59],但尚需对滑坡堰塞湖溃决洪水影响进行全面深入的系统性研究。
表4 叠溪古滑坡残留坝体下游河道最大砾石直径统计
6 结 论
叠溪古堰塞湖形成于地质历史时期,曾存在了数千年的时间,其原始最大湖水面高程约2 355 m,集水面积约为1.1×107 m2,相应的湖容量约为2.9×109 m3。经验公式法和HEC-RAS数值模拟法重建的溃决洪峰流量分别为74 500~76 800 m3/s(平均值76 000 m3/s)和73 060 m3/s,经误差分析推测的溃决洪峰流量计算误差范围为69 000~81 000 m3/s。叠溪古堰塞湖的最大溃决洪峰流量是叠溪段岷江年平均径流量(约为700 m3/s)的百余倍,表明当时的溃决洪水是一次万年级别的超级大洪水,是在世界范围内少见的大规模古滑坡堰塞湖溃决洪水之一。HEC-RAS在模拟河段(7 615 m)的洪水淹没范围约为6.08 km2,最大洪水淹没深度和流速分别为70.10 m和16.78 m/s。叠溪古堰塞湖的发育及溃决消亡对该地区环境演化和地形地貌变迁产生巨大影响,其最直接的影响是对下游地区地形地貌的改造,如在数公里范围内形成大量带状或台阶状的溃坝堆积体和巨砾石堆积“阶地”,以及抬高河床、改变河道走向等,而且这种影响仍延续至今。这些洪水沉积地貌特征与前人关于高能洪水沉积现象的认识高度一致,表明本研究成果是非常可靠的。
HEC-RAS模拟结果灵敏度(误差)分析表明,洪水面高度是对模拟结果不确定性影响最大的一个灵敏度指标。其次是曼宁系数值,它是对模拟结果总误差影响最大的参数。横截面数量的急剧增加或减少,将导致模拟结果出现相对较大的不确定性。在绘制河流横剖面时,可参考HEC-RAS软件用户手册和已有研究成果,以减少其对模拟结果的误差影响。下游水力边界条件和DEM分辨率对模拟结果的影响较小,而水流方向的变化对模拟结果基本无影响。这些研究也表明,HEC-RAS一维水力模型可用于古滑坡堰塞湖溃决洪水重建研究,特别是在高山峡谷地区。但应强调的是,现场调查确定古洪水最大水面高度是模拟结果可靠与否的关键。
--