重生之我使用企鹅Copilot写AIagent

在 AI 技术快速发展的今天,如何高效地构建一个可交互的智能代理(AI Agent)成为了众多开发者的关注焦点。本文将分享我使用 腾讯 Copilot 辅助开发 Java 版 AI Agent 的经历,结合 LangChain4jSpring BootThymeleaf,成功实现了一个功能丰富的项目,并顺利发布上线。


项目背景

AI Agent 的核心功能是基于用户的输入生成智能响应,实现自然语言理解和任务执行能力。我希望构建一个 web 应用,能够通过简单的 UI 与用户交互,后台使用 LangChain4j 处理自然语言逻辑。


技术栈选择

  • 腾讯云 Copilot: 提供代码补全和注释生成功能,大幅提升开发效率。
  • LangChain4j: 强大的 Java 开发框架,用于集成 LLM(大语言模型)并构建链式调用逻辑。
  • Spring Boot: 用于快速构建服务端应用,支持 RESTful 接口和业务逻辑处理。
  • Thymeleaf: 模板引擎,用于生成动态 HTML 页面,方便实现前后端交互。

腾讯 Copilot 的核心助力

在开发过程中,腾讯 Copilot 提供了以下核心帮助:

  1. 代码补全
    Copilot 根据上下文智能生成代码,尤其是在定义 LangChain4j 的链式逻辑时,它能迅速补全复杂的调用链,大幅减少开发时间。

  2. 注释生成
    Copilot 能够自动为关键代码段生成清晰的注释,帮助团队成员快速理解代码逻辑。例如,在定义模型调用逻辑时,Copilot 自动生成注释解释参数含义和调用流程。

  3. LangChain4j 知识库微调后的集成提示
    在集成 LangChain4j 时,Copilot 提供了诸如 API 调用样例、链式结构定义等帮助,避免了我在文档中频繁查找的麻烦。我们使用腾讯云Copilot的微调功能


项目实现

1. 创建项目结构

我通过 Spring Initializr 快速生成了项目框架,使用 Maven 管理依赖。主要模块包括:

  • Controller: 处理用户请求,调用 LangChain4j 的服务。
  • Service: 负责业务逻辑和模型调用。
  • Thymeleaf: 用于前端页面渲染。

项目依赖中包含了以下关键组件:

<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-thymeleaf</artifactId>
    </dependency>
    <dependency>
        <groupId>io.github.langchain4j</groupId>
        <artifactId>langchain4j-core</artifactId>
        <version>最新版本号</version>
    </dependency>
</dependencies>
2. 集成 LangChain4j

LangChain4j 是项目的核心,主要用于处理用户输入并调用大语言模型(如 OpenAI GPT)。以下是一个示例代码,定义了一个简单的 PromptTemplate:

@Service
public class AIService {

    private final LlmService llmService;

    public AIService() {
        this.llmService = OpenAiService.builder()
                .apiKey("your-api-key")
                .build();
    }

    public String generateResponse(String userInput) {
        PromptTemplate template = PromptTemplate.from("User said: {input}. AI response:");
        String prompt = template.apply(Map.of("input", userInput));
        return llmService.call(prompt);
    }
}

在编写这段代码时,腾讯云 Copilot 提供了关键的提示与补全,例如:

  • 快速生成 OpenAiService 的初始化逻辑。
  • 提示如何使用 PromptTemplate 填充参数。
3. 前端页面交互

使用 Thymeleaf 实现了一个简单的用户输入界面:

<form action="/generate" method="post">
    <label for="input">Enter your question:</label>
    <input type="text" id="input" name="userInput" required>
    <button type="submit">Generate</button>
</form>

在 Controller 中,处理用户输入并调用服务:

@Controller
public class AIController {

    private final AIService aiService;

    public AIController(AIService aiService) {
        this.aiService = aiService;
    }

    @PostMapping("/generate")
    public String generateResponse(@RequestParam String userInput, Model model) {
        String response = aiService.generateResponse(userInput);
        model.addAttribute("response", response);
        return "result";
    }
}

Copilot 的实际效果

  1. 减少重复性工作
    在编写模板代码时,如 Controller 方法或 Service 类时,Copilot 自动生成了大部分代码框架,只需进行少量修改。

  2. 提高生产力
    在构建复杂业务逻辑(如 LangChain4j 的链式调用)时,Copilot 能直接补全参数和函数调用。

  3. 代码质量提升
    自动生成的注释帮助我更加清晰地表达代码意图,减少了后期文档编写的时间。


项目发布

在完成开发后,通过 Spring Boot 的内置工具快速打包并部署到服务器。在上线后,用户反馈了良好的使用体验,AI Agent 能够快速响应用户问题并提供准确的回答。


企鹅总结

使用 腾讯 Copilot 辅助开发 LangChain4j + Spring Boot + Thymeleaf 项目是一次非常高效的实践。Copilot 在代码补全和注释生成上的表现令人印象深刻,与 LangChain4j 的结合更是如虎添翼。如果你也在开发类似的项目,不妨尝试将 Copilot 引入到你的开发流程中,享受技术的便利。

未来计划:我将尝试将更多模型(如 Hugging Face)集成到 LangChain4j 中,并探索多语言支持,为用户带来更好的 AI 体验。腾讯云的Copilot 真心推荐使用,最关键这个插件还可以集成到android studio以及微信小程序开发助手中。这点对于开发者而言极为友好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值