在 AI 技术快速发展的今天,如何高效地构建一个可交互的智能代理(AI Agent)成为了众多开发者的关注焦点。本文将分享我使用 腾讯 Copilot 辅助开发 Java 版 AI Agent 的经历,结合 LangChain4j、Spring Boot 和 Thymeleaf,成功实现了一个功能丰富的项目,并顺利发布上线。
项目背景
AI Agent 的核心功能是基于用户的输入生成智能响应,实现自然语言理解和任务执行能力。我希望构建一个 web 应用,能够通过简单的 UI 与用户交互,后台使用 LangChain4j 处理自然语言逻辑。
技术栈选择
- 腾讯云 Copilot: 提供代码补全和注释生成功能,大幅提升开发效率。
- LangChain4j: 强大的 Java 开发框架,用于集成 LLM(大语言模型)并构建链式调用逻辑。
- Spring Boot: 用于快速构建服务端应用,支持 RESTful 接口和业务逻辑处理。
- Thymeleaf: 模板引擎,用于生成动态 HTML 页面,方便实现前后端交互。
腾讯 Copilot 的核心助力
在开发过程中,腾讯 Copilot 提供了以下核心帮助:
-
代码补全
Copilot 根据上下文智能生成代码,尤其是在定义 LangChain4j 的链式逻辑时,它能迅速补全复杂的调用链,大幅减少开发时间。 -
注释生成
Copilot 能够自动为关键代码段生成清晰的注释,帮助团队成员快速理解代码逻辑。例如,在定义模型调用逻辑时,Copilot 自动生成注释解释参数含义和调用流程。 -
LangChain4j 知识库微调后的集成提示
在集成 LangChain4j 时,Copilot 提供了诸如 API 调用样例、链式结构定义等帮助,避免了我在文档中频繁查找的麻烦。我们使用腾讯云Copilot的微调功能
项目实现
1. 创建项目结构
我通过 Spring Initializr 快速生成了项目框架,使用 Maven 管理依赖。主要模块包括:
- Controller: 处理用户请求,调用 LangChain4j 的服务。
- Service: 负责业务逻辑和模型调用。
- Thymeleaf: 用于前端页面渲染。
项目依赖中包含了以下关键组件:
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-thymeleaf</artifactId>
</dependency>
<dependency>
<groupId>io.github.langchain4j</groupId>
<artifactId>langchain4j-core</artifactId>
<version>最新版本号</version>
</dependency>
</dependencies>
2. 集成 LangChain4j
LangChain4j 是项目的核心,主要用于处理用户输入并调用大语言模型(如 OpenAI GPT)。以下是一个示例代码,定义了一个简单的 PromptTemplate:
@Service
public class AIService {
private final LlmService llmService;
public AIService() {
this.llmService = OpenAiService.builder()
.apiKey("your-api-key")
.build();
}
public String generateResponse(String userInput) {
PromptTemplate template = PromptTemplate.from("User said: {input}. AI response:");
String prompt = template.apply(Map.of("input", userInput));
return llmService.call(prompt);
}
}
在编写这段代码时,腾讯云 Copilot 提供了关键的提示与补全,例如:
- 快速生成
OpenAiService
的初始化逻辑。 - 提示如何使用
PromptTemplate
填充参数。
3. 前端页面交互
使用 Thymeleaf 实现了一个简单的用户输入界面:
<form action="/generate" method="post">
<label for="input">Enter your question:</label>
<input type="text" id="input" name="userInput" required>
<button type="submit">Generate</button>
</form>
在 Controller 中,处理用户输入并调用服务:
@Controller
public class AIController {
private final AIService aiService;
public AIController(AIService aiService) {
this.aiService = aiService;
}
@PostMapping("/generate")
public String generateResponse(@RequestParam String userInput, Model model) {
String response = aiService.generateResponse(userInput);
model.addAttribute("response", response);
return "result";
}
}
Copilot 的实际效果
-
减少重复性工作
在编写模板代码时,如 Controller 方法或 Service 类时,Copilot 自动生成了大部分代码框架,只需进行少量修改。 -
提高生产力
在构建复杂业务逻辑(如 LangChain4j 的链式调用)时,Copilot 能直接补全参数和函数调用。 -
代码质量提升
自动生成的注释帮助我更加清晰地表达代码意图,减少了后期文档编写的时间。
项目发布
在完成开发后,通过 Spring Boot 的内置工具快速打包并部署到服务器。在上线后,用户反馈了良好的使用体验,AI Agent 能够快速响应用户问题并提供准确的回答。
企鹅总结
使用 腾讯 Copilot 辅助开发 LangChain4j + Spring Boot + Thymeleaf 项目是一次非常高效的实践。Copilot 在代码补全和注释生成上的表现令人印象深刻,与 LangChain4j 的结合更是如虎添翼。如果你也在开发类似的项目,不妨尝试将 Copilot 引入到你的开发流程中,享受技术的便利。
未来计划:我将尝试将更多模型(如 Hugging Face)集成到 LangChain4j 中,并探索多语言支持,为用户带来更好的 AI 体验。腾讯云的Copilot 真心推荐使用,最关键这个插件还可以集成到android studio以及微信小程序开发助手中。这点对于开发者而言极为友好。