自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 Voxel R-CNN代码复现

论文:[2012.15712] Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection。此外,由于电脑GPU内存等问题,如果报内存不足,在不改变电脑配置情况下,可更换小的数据集跑通,但模型最后的平均精度会有所下降。我用的是自己构建的mini-kitti数据集,最后结果和文章中给出的还差一些,毕竟数据量少,也可以理解。原代码用的是分布式训练,我的电脑是单卡,我把程序直接改为单卡训练了。直接上最后预测结果吧。

2025-04-29 15:03:31 241

原创 win11 ubuntu18.04 docker安装及镜像拉取遇到的问题

还有一个问题docker GPU 的配置,win 还算顺利,ubuntu的可能由于版本和网络限制问题,有点复杂。在win 和ubuntu是不一样的!我的代码和数据在硬盘里。用GPU 挂载命令要加 --gpus all。在win里是F盘,但在ubuntu里不是。ubuntu18.04的挂载命令。

2025-04-24 16:56:36 146

原创 tensorflow 问题

tensorflow 显示CUDNN有问题。

2025-03-19 15:58:15 112

原创 conda

【代码】conda。

2024-12-16 14:27:02 141

原创 conda 虚拟环境的创建、激活、退出、删除

【代码】conda 虚拟环境的创建、激活、退出、删除。

2024-12-16 13:53:09 249

原创 学习笔记 | Pointpillar点云体素化

然后对于每个网格所对应的柱子中的每个点都取(x,y,z,r,x_c,y_c,z_c,x_p,y_p)9个维度。每个柱子中点多于N的进行采样,少于N的进行填充0.于是形成(D,N,P)D=9,N为点数(设定值),P=H*W。然后学习特征,用一个简化的PointNet从D维中学出C个channel来,变为(C,N,P),然后对N进行最大化操作操作变为(C,P),又因为P是H*W的,我们再展开成一个伪图像形式,H,W为宽高,C为通道数。2.2D卷积基础网络,用于将伪图像处理成高维特征表示;

2024-12-10 19:52:48 478

原创 学习笔记 | Second算法

稀疏中间层特征提取如上图所示,其中黄色框表示稀疏卷积,白色框表示子流形卷积,红色框表示稀疏到密集层。可以发现其有两个稀疏卷积阶段,每个阶段有多个子流型卷积层和一个正常稀疏卷积层对z轴进行下采样。,但是对于角度预测进行了改进。这是由于VoxelNet直接预测弧度偏移,但在0和π的情况下会遇到一个对立的问题,因为这两个角度对应的是同一个盒子,但当其中一个被误认为是另一个时,会产生很大的损失。作者在最后的RPN层(原来是两个分支,用来物体分类和位置回归)多引入了一个分支(如下图5所示),用来对。

2024-12-06 12:55:55 392

原创 学习笔记 | pointnet pointnet++训练代码详解

以train_classification.py 为例。

2024-12-05 19:34:05 394

原创 学习笔记 | Pointnet++ 原理 及分类分割代码详解

例如 对红色上面的三个点取个权值进行相加,最终就可以得到蓝色这一层上面x的值。权值的取法,距离x的值越近,权值越大,距离x的值越远,权值越小。分类网络只要通过这样逐层的提取局部特征,最后总结出全局特征就可以输出分类结果问题了。对于分类 三组合完事之后,要过全连接然后输出每一个分类的分数即可。N 代表点云的数目 d 数据存储的维度 C 特征存储的维度。首先将点云提取一个全局特征 再通过这个全局特征逐步上采样。通过这两种方式进行上采样,最终得到点的不同类别的分数。

2024-12-05 19:31:29 611

原创 学习笔记 | Pointnet学习笔记 原理+代码理解

输入n*3 经过T-net 对它进行一个旋转,然后通过mlp对它进行一个升维,升到64维,然后再经过T-net 对它进行一个旋转,旋转到一个准确的角度,再通过MLP进行升维,得到n*1024维,然后做了一个最大池化,对称函数 ,经过最大池化得到1*1024维的矩阵,是全局特征。输入n*3点云 n个点 ,每个点3个数表示,经过T-Net网络生成一个3*3的矩阵,让点云与这个矩阵相乘得到校正后的方向,相当于旋转到一个准确的方向,再进行接下来网络的训练。,使得点云数据更加标准化、对齐,减少噪声的影响。

2024-11-29 16:50:16 591

原创 DETR复现:基于transformers的目标检测

修改models/detr.py文件,build()函数中,可以将红框部分的代码都注释掉,直接设置num_classes为自己的类别数+1。新建py文件,mydataset.py,使用如下代码,修改num_classes为自己的类别数+1。打开Anaconda Prompt 创建并激活环境detr-main,这里要用到的只有创建与激活。有时候网站不好用,网站下载速度较慢,可以选择百度网盘下载,一搜就能搜到。生成pth文件 detr-r50-e632da11.pth。3.下载预训练权重文件,生成pth文件。

2024-07-03 09:52:22 1495

原创 google colab 使用指南

文件上传google drive。

2024-07-03 09:23:14 150

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除