python爬虫进阶|异步协程

本文探讨了爬虫中使用异步协程提高性能的原因,解释了阻塞和非阻塞的概念,并介绍了Python的asyncio模块在异步网络操作中的应用。通过示例展示了如何定义和使用协程,以及如何处理IO密集型任务,以实现更高效的爬虫程序。
摘要由CSDN通过智能技术生成

python爬虫进阶 | 异步协程

前言

python

之前爬虫使用的是requests+多线程/多进程,后来随着前几天的深入了解,才发现,对于爬虫来说,真正的瓶颈并不是CPU的处理速度,而是对于网页抓取时候的往返时间,因为如果采用requests+多线程/多进程,他本身是阻塞式的编程,所以时间都花费在了等待网页结果的返回和对爬取到的数据的写入上面。而如果采用非阻塞编程,那么就没有这个困扰。这边首先要理解一下阻塞和非阻塞的区别。

  1. 阻塞调用是指调用结果返回之前,当前线程会被挂起(线程进入非可执行状态,在这个状态下,CPU不会给线程分配时间片,即线程暂停运行)。函数只有在得到结果之后才会返回。
  2. 对于非阻塞则不会挂起,直接执行接下去的程序,返回结果后再回来处理返回值。

其实爬虫的本质就是client发请求,批量获取server的响应数据,如果我们有多个url待爬取,只用一个线程且采用串行的方式执行,那只能等待爬取一个结束后才能继续下一个,效率会非常低。需要强调的是:对于单线程下串行N个任务,并不完全等同于低效,如果这N个任务都是纯计算的任务,那么该线程对cpu的利用率仍然会很高,之所以单线程下串行多个爬虫任务低效,是因为爬虫任务是明显的IO密集型(阻塞)程序。那么该如何提高爬取性能呢?

一、基本概念

协程,英文叫做 Coroutine,又称微线程,纤程,协程是一种用户态的轻量级线程。

协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈。因此协程能保留上一次调用时的状态,即所有局部状态的一个特定组合,每次过程重入时,就相当于进入上一次调用的状态。

协程本质上是个单进程,协程相对于多进程来说,无需线程上下文切换的开销,无需原子操作锁定及同步的开销,编程模型也非常简单。

我们可以使用协程来实现异步操作,比如在网络爬虫场景下,我们发出一个请求之后,需要等待一定的时间才能得到响应,但其实在这个等待过程中,程序可以干许多其他的事情,等到响应得到之后才切换回来继续处理,这样可以充分利用 CPU 和其他资源,这就是异步协程的优势。

二、异步协程

在python3.4之后新增了asyncio模块,可以帮我们检测IO,实现应用程序级别的切换(异步IO)。注意:asyncio只能发tcp级别的请求,不能发http协议。

asyncio 是干什么的?

  1. 异步网络操作
  2. 并发
  3. 协程

几个概念:

  • event_loop:事件循环,相当于一个无限循环,我们可以把一些函数注册到这个事件循环上,当满足条件发生的时候,就会调用对应的处理方法。
  • coroutine:中文翻译叫协程,在 Python中常指代为协程对象类型,我们可以将协程对象注册到时间循环中,它会被事件循环调用。我们可以使用 async关键字来定义一个方法,这个方法在调用时不会立即被执行,而是返回一个协程对象。
  • task:任务,它是对协程对象的进一步封装,包含了任务的各个状态。
  • future:代表将来执行或没有执行的任务的结果,实际上和 task 没有本质区别。
  • async关键字:async 定义一个协程;
  • await 关键字:用来挂起阻塞方法的执行。

1.定义一个协程:

import asyncio

async def execute(x):
    print('Number:', x)


coroutine = execute(1)
print('Coroutine:', coroutine)
print('After calling execute')

loop = asyncio.get_event_loop()
loop.run_until_complete(coroutine)
print('After calling loop')

#输出结果
Coroutine: <coroutine object execute at 0x1034cf830>

After calling execute

Number: 1

After calling loop

可见,async 定义的方法就会变成一个无法直接执行的 coroutine 对象,必须将其注册到事件循环中才可以执行。

2.绑定回调:也可以为某个 task 绑定一个回调方法

import asyncio
import requests

async def request():
    url='https://www.baidu.com'
    status = requests.get(url).status_code
    return status

def  callback(task):
    print('Status:'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值