自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 KITTI:3D目标检测数据集和跟踪数据集解析

本文整理了KITTI 3D目标检测和跟踪数据集的详细信息,包括传感器配置、坐标系定义、标定文件和标签内容。数据采集车配备了激光雷达、摄像头和IMU等传感器,采样频率均为10Hz。详细说明了相机标定文件中的内参矩阵、修正矩阵和位姿变换矩阵,以及标签文件中目标位置和角度在相机坐标系下的表示方式。同时介绍了多目标跟踪数据集的IMU信息字段。所有坐标系均为右手系,提供了传感器相对位置示意图和坐标系指向说明,方便研究者正确使用该数据集。

2025-12-19 21:51:01 884

原创 学习深度学习 第三章 线性神经网络

待更新2025.8.23。

2025-08-23 17:05:15 990

原创 BEVFusion 详细复现过程

本文详细记录了在Ubuntu 20.04系统下配置和运行BEVFusion项目的过程。主要内容包括:1) 环境配置,安装CUDA 11.3、PyTorch 1.10等依赖;2) 数据集处理,下载并预处理nuscenes mini数据集;3) 运行测试程序,包括目标检测和地图分割任务,解决了多个依赖冲突和参数错误问题;4) 尝试训练Camera-Only目标检测模型,遇到并修复了配置文件和参数错误。整个过程提供了详细的命令行操作和错误解决方案,为类似配置环境下的BEVFusion项目部署提供了实用参考。

2025-08-19 12:03:49 1520

原创 Kitti数据集复现PointPillars

本文介绍了在MMdet3D框架下复现PointPillars算法的详细安装流程和环境配置方法。主要内容包括:1)通过源码或库安装两种方式配置MMdet3D环境,包括CUDA、PyTorch和依赖库的安装;2)常见报错解决方案,如MMCV版本冲突和NumPy版本过高问题;3)KITTI数据集的下载和处理步骤,包括数据集目录结构整理和ImageSets数据划分。文章提供了完整的验证安装方法,确保环境配置正确性,并附有官方文档链接和具体操作命令,为3D目标检测研究提供了实用参考。

2025-08-16 11:36:07 693

原创 学习深度学习 第二章 预备知识

本文摘要介绍了深度学习中的关键预备知识,主要包括: 环境配置:详细说明了使用conda创建Python环境、安装PyTorch及相关工具的方法。 张量操作:介绍了PyTorch中tensor类的基本操作,包括创建、运算、索引切片等,特别强调了内存优化的原地更新方法。 线性代数基础:涵盖了向量、矩阵运算的核心概念,包括降维操作、点积、矩阵乘法以及范数计算等数学工具。 这些内容为后续深度学习模型的实现和优化奠定了必要的数学和编程基础。

2025-08-05 16:13:47 1002

原创 学习深度学习 第一章 引言

本文摘要:机器学习包含四大关键组件:数据(可能包含社会偏见)、模型结构(如深度学习的多层神经元)、目标函数(衡量模型性能)和优化算法(如梯度下降)。机器学习问题主要分为监督学习(回归、分类、标记、搜索、推荐、序列学习)、无监督学习(聚类、主成分分析等)、与环境互动的在线学习以及强化学习。其中,监督学习通过特征映射到标签解决"有多少"(回归)和"哪一个"(分类)的问题,而无监督学习仅使用未标记样本。强化学习则通过与环境互动获得反馈来优化模型行为。

2025-07-26 16:52:22 295

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除