第二章:范数
这章我在去年学的时候还是挺懵的,懂是什么又不完全懂,只能大致知道每个范数的计算方法,但不是太明白为什么要范数这个概念,范数为什么这么算。这次重新看了看这部分,查询了一些资料,希望能让大家更好理解。
首先是为什么要有范数?回到高中我们都知道数是能比大小的,但是向量不行,当然复数也不能了,但我们后来采用了模的概念,其实就是比较两个点到原点的距离这样就可以比较了,按照这个方式我们知道(4,4)比(1,5)模大,这其实就是二范数。那么又为什么还有一范数或其它范数呢,大家可以简单理解为一种范数对应一种比较方式,如果我们把前面的“模”定义成一个点从原点只能通过上下左右四种运动方向运动到指定点,那么到(4,4)点要8次(4次向上,4次向右),运动到(1,5)点要6次,通过这种方式判断第一个点范数比第二个点大也就比较出了大小,这种定义方式也就是一范数。当然,如果我们按照横纵坐标最大值作为这个点用于比较大小的“模”,那么第二个点反而比第一个点大了,这种定义方式也对应着无穷范数。
大家理解到这个层次再看向量范数就比较好理解了,主要看p范数,其它都是p范数的特例,无穷范数证明则体现了“大值”现象