样本及抽样分布——《概率论及其数理统计》第六章学习笔记

本文概述了《概率论及其数理统计》第六章的学习笔记,主要聚焦于随机样本的定义、分布函数、直方图与箱线图、分位数、异常值检测、抽样分布、统计量概念及其常见应用,如样本均值与方差的分布。深入理解了样本与抽样分布对于解决实际问题的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

样本及抽样分布——《概率论及其数理统计》第六章学习笔记

前言

从第五章开始,就有点看不懂了,问题8大,简单记下,有空再复习。

内容上,显而易见,第三节的抽样分布是重中之重,而第一节是带来样本,总体等名词的概念,第二节则是介绍直方图和箱线图,只有第三节涵盖了该章几乎80%的知识点,且多数是出现在题目的知识点。

MindMap

在这里插入图片描述

随机样本

定义

直接看课本的定义

设 X 是具有 分布函数 F 的随机变量,
若 X 1 , X 2 , . . . , X n 若 X_1, X_2,...,X_n X1,X2,...,Xn
是具有 同一分布函数 F 的、相互独立的随机变量,则称
X 1 , X 2 , . . . , X n X_1, X_2,...,X_n X1,X2,...,Xn
为分布函数 F 得到的 容量为n的简单随机样本, 简称样本,其观测值为(小写的)
x 1 , x 2 , . . . , x n x_1, x_2, ...,x_n x1,x2,...,xn
称为 样本值, 又称为 X 的 n 个 独立的观察值

分布函数

从习题的内容来看,考察样本的分布函数要比直接考察定义的概率要大一些。

F ∗ ( x 1 , x 2 , . . . , x n ) = ∏ i = 1 n F ( x i ) F^*(x_1, x_2, ..., x_n) = \prod_{i=1}^{n}{F(x_i)} F(x1,x2,...,xn)=i=1nF(xi)

概率密度的类似,不打了

直方图和箱线图

直方图(频率直方图) 很好理解,就不在此展开了。

我们重点看箱线图。

分位数

在了解箱线图之前,我们需要知道 样本分位数

分位数很好理解,其实就是样本中的 一个分割的数字,将样本分成两个部分,我们设容量为 n 的样本观测值 x1, x2, …, xn 的样本p分位数xp, 有以下性质

  1. 至少np 个观测值 小于或等于xp。
  2. 至少n(1-p) 个观察值大于等于 xp。

具体的表达式为
x p = { x ( [ n p ] + 1 ) , 当 n p 不 是 整 数 , 1 2 [ x ( n p ) + x ( n p + 1 ) ] , 当 n p 整 数 。 x_p = \left\{ \begin{array}{lr} x_{([np]+1)}, \qquad & 当n_p 不是整数, \\ \frac{1}{2}[x_{(np)} + x_{(np+1)}], & 当n_p 整数。 \end{array} \right. xp={x([np]+1),21[x(np)+x(np+1)],np,np
特别,当 p = 0.5时,其实就是我们熟悉的中位数。

我们将 0.25分位数 称为 第一四分位数,记为 Q1,0.75分位数 称为 第三四分位数, 记为 Q3。由此则可以引出箱线图。

箱线图

该图基于 最小值Min, Q1,中位数M,Q3,最大值Max 5个值。具体做法可以直接参考课本的内容。

箱线图有以下重要性质:

  1. 中心位置,中位数所在位置就是数据集的中心。
  2. 散布程度,可以通过箱线图直观看出各区间的数据的集中与分散。
疑似异常值

这里主要是 数据中出现 某一个数据(不合常理的大或者小的数据),就称为 疑似异常值

我们记 Q1 和 Q3 的距离为 IQR,称为 四分位数间距,若数据 小于 Q1-1.5IQR, 或者 大于 Q3+1.5IQR,就是疑似异常值。

经过上述处理的箱线图 就是 修正箱线图

抽样分布

重点来了!

统计量

定义

设 X 1 , . . . , X n 是 来 自 总 体 X 的 一 个 样 本 , g ( X 1 , . . . , X n ) 是 X 1 , . . . , X n 的 函 数 , 且 g 不 含 未 知 参 数 , 就 称 为 g ( X 1 , . . . , X n ) 是 一 统 计 量 。 设 X_1,...,X_n 是来自总体X的一个样本,g(X_1,...,X_n) 是X_1,...,X_n 的函数, \\且 g不含未知参数,就称为g(X_1,...,X_n) 是一统计量。 X1,...,XnXg(X1,...,Xn)X1,...,Xn,gg(X1,...,Xn)

常见统计量

样本均值
X ‾ = 1 n X i \overline{X} = \frac{1}{n}X_i X=n1Xi
样本方差
S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ‾ ) 2 = 1 n − 1 ( ∑ i = 1 n X i − n X ‾ 2 ) S^2 = \frac{1}{n-1}\sum_{i=1}^{n}{(X_i - \overline{X})^2} = \frac{1}{n-1}(\sum_{i=1}^{n}{X_i - n\overline{X}^2}) S2=n11i=1n(XiX)2=n11(i=1nXinX2)
样本标准差
S = S 2 = 1 n − 1 ( ∑ i = 1 n X i − n X ‾ 2 ) S=\sqrt{S^2} = \sqrt{\frac{1}{n-1}(\sum_{i=1}^{n}{X_i - n\overline{X}^2})} S=S2 =n11(i=1nXinX2)
样本k阶矩
A k = 1 n ∑ i = 1 n X i k , k = 1 , 2 , . . . A_k = \frac{1}n \sum_{i=1}^n{X_i^k}, \quad k=1,2,... Ak=n1i=1nXik,k=1,2,...
样本中心矩
B k = 1 n ∑ i = 1 n ( X i − X ‾ ) k , k = 2 , 3 , . . . B_k = \frac{1}n \sum_{i=1}^n{(X_i-\overline{X})^k}, \quad k=2,3,... Bk=n1i=1n(XiX)k,k=2,3,...

经验分布函数

我觉得只需要知道一个点就可以了:样本观测值中小等于 指定值x所占的比率。

三大分布

X2 分布

χ 2 分 布 \chi^2 分布 χ2

我们设 Xi是 来自总体 N(0,1) 的样本,则
χ 2 = X 1 2 + X 2 2 + . . . + X n 2 \chi^2 = X_1^2 + X_2^2 + ... +X_n^2 χ2=X12+X22+...+Xn2
服从自由度 为 n 的
χ 2 分 布 , 记 为 χ 2 ∼ χ 2 ( n ) \chi^2 分布, 记为 \chi^2 \sim \chi^2(n) χ2χ2χ2(n)
概率密度为:
f ( y ) = { 1 2 n 2 Γ ( n / 2 ) y n / 2 − 1 e − y / 2 , y > 0 0 , 其 他 f(y) = \left\{ \begin{array}{lr} \frac{1}{2^{\frac{n}{2}}\Gamma(n/2)}{y^{n/2 -1}e^{-y/2}}, \qquad & y > 0 \\ 0, & 其他 \end{array} \right. f(y)={22nΓ(n/2)1yn/21ey/2,0,y>0
该分布满足可加性
E ( χ 2 ) = n , D ( χ 2 ) = 1 E(\chi^2) = n, D(\chi^2) = 1 E(χ2)=n,D(χ2)=1

t 分布

X ∼ N ( 0 , 1 ) , Y ∼ χ 2 ( n ) , 且 X 和 Y 相 互 独 立 , t = X Y / n X\sim N(0,1), Y\sim \chi^2(n), 且 X 和 Y 相互独立,\\ t = \frac{X}{\sqrt{Y/n}} XN(0,1),Yχ2(n),XYt=Y/n X

t 服从 自由度 为n 的 t 分布,记为 t~t(n).

概率密度函数为
h ( t ) = Γ [ ( n + 1 ) / 2 ] π n Γ ( n / 2 ) ( 1 + t 2 n ) − ( n + 1 ) / 2 , − ∞ < t < ∞ h(t) = \frac{\Gamma[(n+1)/2]}{\sqrt{\pi n}\Gamma(n/2)}{(1+\frac {t^2}n)^{-(n+1)/2}}, -\infty <t<\infty h(t)=πn Γ(n/2)Γ[(n+1)/2](1+nt2)(n+1)/2,<t<

F 分布

在这里插入图片描述

敲累了,直接上图片吧。

这个就是两个满足 第一个分布,然后分式的情况。

补充说明,Γ 就是 伽马函数。

正态总体的样本均值与样本方差的分布

条件:总体存在均值 μ, 方差为 σ^2,
E ( X ‾ ) = μ , D ( X ‾ ) = σ 2 / n E ( S 2 ) = σ 2 E(\overline{X}) = \mu, \quad D(\overline{X}) = \sigma^2/n \\ E(S^2) = \sigma^2 E(X)=μ,D(X)=σ2/nE(S2)=σ2

Th2

X1,…,Xn 是总体N(μ,σ^2)的样本,
X ‾ ∼ N ( μ , σ 2 / n ) . \overline{X} \sim N(\mu, \sigma^2 / n). XN(μ,σ2/n).

Th3

( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) X ‾ 与 S 2 相 互 独 立 \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1) \\ \overline{X} 与 S^2 相互独立 σ2(n1)S2χ2(n1)XS2

Th4

X ‾ − μ S / n ∼ t ( n − 1 ) \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t(n-1) S/n Xμt(n1)

Th5

设 Xi,和 Yi 的来自两个正态总体,且两个样本相互独立。
S 1 2 / S 2 2 σ 1 2 / σ 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) . 当 σ 1 2 = σ 2 2 = σ 2 时 \frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} \sim F(n_1-1, n_2-1). \\ 当\sigma^2_1 = \sigma_2^2 = \sigma^2 时 σ12/σ22S12/S22F(n11,n21).σ12=σ22=σ2

在这里插入图片描述

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值