本题数据范围较小,可以使用博弈论的sg函数求解。(不知道sg函数的可以去了解一下,做博弈题很好用)
思路:
用一个8位二进制数表示某一个空格是否非空,上面四格分别用二进制的第7、6、5、4位表示,下面四格分别用二进制的第0、1、2、3位表示
题目里的四种情况我们分别用00000001、00000011、00000010、00000110四种二进制数表示,转化为十进制分别为:1、3、2、6。
枚举每一位,如果某一位为0,那么我们可以将它变为1,如果某一位和它的同一行的下一位都为0,我们可以将它的它的的下一位都变为1.
当二进制数中0的个数为1时sg函数的值为0。
已经给出了四种小蓝的初始下法,所以我们转化为给定初始情况的小乔先手,分别求出sg(1)、sg(3)、sg(2)、sg(6)。非零代表先手赢,否则后手赢。
#include<unordered_set>
#include<iostream>
using namespace std;
const int N=1<<9;
int f[N];
int sg(int x)
{
if(f[x]!=-1)return f[x];
int cnt=0;//统计x中0的个数
for(int i=0;i<8;i++)
if((x>>i&1)==0)cnt++;
if(cnt==1)return f[x]=0;
unordered_set<int>s;
for(int i=0;i<8;i++)
{
if((x>>i&1)==0)
{
int aa=x+(1<<i),bb=x+(1<<i)+(1<<i+1);
s.insert(sg(x+(1<<i)));
if(i!=3&&i!=7&&((x>>(i+1))&1)==0)s.insert(sg(x+(1<<i)+(1<<i+1)));
}
}
for(int i=0;;i++)
if(!s.count(i))return f[x]=i;
}
int main()
{
//初始化
for(int i=0;i<N;i++)f[i]=-1;
//注意四个输出分别对应四种初始局面的结果,如果同时输出每次数次都应初始化
//每次运行只打开一行注释就行了
// cout<<sg(1); //3
// cout<<sg(3); //2
// cout<<sg(2); //3
// cout<<sg(6); //0
return 0;
}