十三届蓝桥杯c++A组省赛灭鼠先锋

文章介绍了一种使用博弈论中的sg函数来解决特定棋盘游戏策略的方法。通过8位二进制数表示棋盘状态,分析四种初始局面,并进行位操作判断游戏胜负。程序通过枚举和动态规划计算sg函数值,确定先手或后手是否能获胜。
摘要由CSDN通过智能技术生成

 本题数据范围较小,可以使用博弈论的sg函数求解。(不知道sg函数的可以去了解一下,做博弈题很好用)

思路:       

        用一个8位二进制数表示某一个空格是否非空,上面四格分别用二进制的第7、6、5、4位表示,下面四格分别用二进制的第0、1、2、3位表示

        题目里的四种情况我们分别用00000001、00000011、00000010、00000110四种二进制数表示,转化为十进制分别为:1、3、2、6。

        枚举每一位,如果某一位为0,那么我们可以将它变为1,如果某一位和它的同一行的下一位都为0,我们可以将它的它的的下一位都变为1.

当二进制数中0的个数为1时sg函数的值为0。

已经给出了四种小蓝的初始下法,所以我们转化为给定初始情况的小乔先手,分别求出sg(1)、sg(3)、sg(2)、sg(6)。非零代表先手赢,否则后手赢。

#include<unordered_set>
#include<iostream>
using namespace std;
const int N=1<<9;
int f[N];
int sg(int x)
{
    if(f[x]!=-1)return f[x];
    int cnt=0;//统计x中0的个数
    for(int i=0;i<8;i++)
        if((x>>i&1)==0)cnt++;
    
    if(cnt==1)return f[x]=0;
    
    unordered_set<int>s;
    for(int i=0;i<8;i++)
    {
        if((x>>i&1)==0)
        {
            int aa=x+(1<<i),bb=x+(1<<i)+(1<<i+1);
            s.insert(sg(x+(1<<i)));
            if(i!=3&&i!=7&&((x>>(i+1))&1)==0)s.insert(sg(x+(1<<i)+(1<<i+1)));
        }
    }
    for(int i=0;;i++)
        if(!s.count(i))return f[x]=i;
}
int main()
{
    //初始化
    for(int i=0;i<N;i++)f[i]=-1;
    
    //注意四个输出分别对应四种初始局面的结果,如果同时输出每次数次都应初始化
    //每次运行只打开一行注释就行了
    
    // cout<<sg(1);     //3
    // cout<<sg(3);     //2
    // cout<<sg(2);     //3
    // cout<<sg(6);     //0
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值