洛谷-P5535

 思路:
分三种情况:

  1. 如果第k个数是质数,而且在寻找范围中不包含它的倍数,那么它只需要一天就能传完消息;
  2. 如果第k个数是质数,但是在这个范围里包含了它的倍数,那么在第一天的时候它先传给除去他的倍数之外的数,由伯特兰-切比雪夫定理,对大于1的数k,在k和2k之间至少存在一个质数 ,所以第二天依次传与它们互质的数 
  3. 如果第k个数是合数,再由比雪夫定理,得知至少存在一个质数p2,k/2 < p1 < k,显然n小于p的倍数,以及质数p2,k < p2 < 2k,同理p2的倍数也一定大于2k,符合第一种情况,所以也一共需要两天 
#include <bits/stdc++.h>
using namespace std;
long long n, k;


bool prime(long long k){

	for(int i = 2; i <= sqrt(k); i ++){
		if(k % i == 0)
			return 0;
	}
	return 1;
}

int main(){
	scanf("%lld%lld", &n, &k);
	if(prime(k + 1) && (n + 1 < 2 *(k + 1)))  
		cout << "1" << endl;
	else 
		cout << "2" << endl;
	return 0;
	
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值