思路:
分三种情况:
- 如果第k个数是质数,而且在寻找范围中不包含它的倍数,那么它只需要一天就能传完消息;
- 如果第k个数是质数,但是在这个范围里包含了它的倍数,那么在第一天的时候它先传给除去他的倍数之外的数,由伯特兰-切比雪夫定理,对大于1的数k,在k和2k之间至少存在一个质数 ,所以第二天依次传与它们互质的数
- 如果第k个数是合数,再由比雪夫定理,得知至少存在一个质数p2,k/2 < p1 < k,显然n小于p的倍数,以及质数p2,k < p2 < 2k,同理p2的倍数也一定大于2k,符合第一种情况,所以也一共需要两天
#include <bits/stdc++.h>
using namespace std;
long long n, k;
bool prime(long long k){
for(int i = 2; i <= sqrt(k); i ++){
if(k % i == 0)
return 0;
}
return 1;
}
int main(){
scanf("%lld%lld", &n, &k);
if(prime(k + 1) && (n + 1 < 2 *(k + 1)))
cout << "1" << endl;
else
cout << "2" << endl;
return 0;
}