蒙特卡罗算法求PI的基础原理

蒙特卡罗算法是一种基于统计模拟的方法,通过大量随机样本来解决复杂问题。例如,它可以通过在正方形内随机投点并计算落入1/4圆内的点的比例来估算圆周率π。当样本数量足够大时,这种方法能提供更精确的结果。提供的Python代码示例展示了如何运用此算法求得π的近似值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、Monte Carlo蒙特卡罗算法(统计模拟法)

Monte Carlo算法的基本思想是: 以模拟的实验形式、以大量随机样本的统计形式,来得到问题的求解。

比如,求圆周率,以数学的方式是非常复杂的,但是我们可以以简单的形式去求解:

如图,我们在正方形内,随机落点
统计落在
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值