
机器学习
文章平均质量分 74
牛马程序员2025
计算机/统计学硕士(研究方向:网络爬虫/机器学习)
Python爬虫 | Selenium/Scrapy | 数据清洗 | 可视化分析 | 学术自动化
擅长数据采集、脚本开发
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于YOLO算法的高精度人群计数系统技术 完整项目源码有偿直出
传统基于检测的计数方法在高密度场景下表现欠佳,而基于回归的密度图方法又缺乏个体定位信息。'density': torch.sigmoid(self.density(x[1])) # 使用中间层特征。self.density_criterion = nn.MSELoss() # 密度图损失。return density_map / np.sum(density_map) # 归一化。self.det_criterion = FocalLoss() # 检测损失。# 计算与最近k个点的平均距离。原创 2025-04-22 17:44:10 · 510 阅读 · 0 评论 -
微博信息获取以及预处理
源码有偿获取,需要请私信作者。原创 2024-01-12 15:06:47 · 746 阅读 · 0 评论 -
机器学习-外汇预测
外汇预测在金融领域具有重要的意义,可以帮助投资者制定更好的投资策略,企业降低汇率风险,政府制定更合适的经济政策,同时也对国际贸易关系产生影响。本实验旨在通过实现线性回归模型,对时间序列数据(欧元和美元的兑换率)进行预测,并通过评价指标对模型进行评估。在实验中,我们使用Python编程语言,主要使用了pandas、numpy、scikit-learn、tabulate、matplotlib和torch等库。实验步骤包括数据准备、数据预处理、模型训练和评估等。通过不同的评价指标和MSE损失曲线,我们可以看出原创 2023-12-14 11:10:04 · 2247 阅读 · 1 评论 -
基于神经网络预测混凝土强度
1.13.1随着人工智能和深度学习技术的不断发展,神经网络在回归问题领域的应用也会不断拓展和深化。未来回归问题领域的发展方向可能包括以下几个方面:1. 多任务回归:将多个相关的回归任务结合起来进行联合学习,可以提高模型的泛化能力和效率,适用于多个相关任务共同出现的场景。2. 强化学习回归:将强化学习技术应用于回归问题中,可以通过优化奖励函数来实现更加精准和灵活的回归预测。3. 增强模型的可解释性:由于神经网络模型的黑盒性,导致模型的可解释性较差,不利于模型的应用和推广。原创 2023-12-14 11:03:41 · 1869 阅读 · 5 评论