当我们考虑超平面方程 ax+by+cz+d=0 时,法向量 n=(a,b,c) 表示的是超平面的法线方向,而 d 是从原点到超平面的垂直距离乘以法向量的模。
对于超平面上任一点 P(x0,y0,z0),该点满足超平面方程,因此有:
a⋅x0+b⋅y0+c⋅z0=−d
这意味着点 P 的位置向量 P=(x0,y0,z0) 与法向量n 的点积恒等于-d,这说明了P向量在法向量上的投影与法向量的模的乘积恒等于-d。
又因为法向量的模是固定值,因此任意p向量在法向量上的投影也是固定值。既然所有的投影都是固定值的话,那么这个超平面一定与法向量有垂直关系
——————————————————————————————————
另一种解释:
对于超平面Ax+b=0 的形式,其中 A 是一个系数矩阵,x 是变量向量,b 是常数向量),那么“去掉常数项”意味着不考虑 b 这个偏置项。
当从超平面对 b 进行操作时(即令 b=0),确实可以得到一个新的超平面。由于超平面的斜率或方向完全由系数矩阵 A 决定,因此,如果原超平面和去掉常数项后的超平面具有相同的系数矩阵 A,则这两个超平面将是平行的,它们永远不会相交,并且具有相同的方向向量。
因此对于某超平面ax+by+cz+d=0 其方向向量与超平面ax+by+cz=0上的方向向量总能找到相同的向量,所以验证法向量与超平面ax+by+cz=0上的所有方向向量垂直也就证明了法向量与超平面ax+by+cz+d=0上所有方向向量也垂直。
超平面ax+by+cz=0上任一点 P(x0,y0,z0) 有位置向量P=(x0,y0,z0)
法向量(a,b,c)与其的点积为 a⋅x0+b⋅y0+c⋅z0=0 因此法向量与任意位置向量P垂直
所以法向量与ax+by+cz+d=0上所有方向向量也垂直。