- 博客(5)
- 收藏
- 关注
原创 EEG microstates are a candidate endophenotype for schizophrenia脑电图微状态是精神分裂症的潜在内表型
脑电图微状态是反复出现的头皮电位构型,稳定时间约为 90 毫秒。在四种典型的微状态类别(通常标记为 A、B、C、D)中,有两种(即 C 类和 D 类)的动态变化被认为可能是精神分裂症的内表型。对于内表型而言,患者未受影响的亲属与健康对照者相比,必须表现出异常。本研究分析了精神分裂症患者未受影响的兄弟姐妹、精神分裂症患者、健康对照者以及首次发作精神病(FEP)患者静息状态下脑电图记录的微状态动态变化。结果显示,与健康对照者相比,精神分裂症患者及其兄弟姐妹的 C 类微状态出现频率增加,D 类微状态出现频率减少。
2025-08-29 11:08:56
601
原创 Discovering dynamic brain networks from big data in rest and task从静息态和任务态大数据中探索动态脑网络
大脑活动是对感觉输入的反应与其自身自发加工过程的动态结合。因此,无论个体是否专注于外部施加的任务,大脑活动都在持续变化。此前,我们提出了一种基于隐马尔可夫模型(Hidden Markov Models, HMM)的分析方法,该方法可将任务态或静息态脑活动建模为一系列不同脑网络构成的动态序列,从而克服了滑动窗口法存在的诸多局限性。
2025-08-29 10:24:16
520
原创 Cognitive manipulation of brain electric microstates脑电微状态的认知调控
对清醒静息状态的脑电图(EEG)研究表明,在某些短暂时段内,头皮上的整体脑电活动会保持半稳定状态(即所谓的 “微状态”)。对这种脑电活动的拓扑分析显示,其大部分变异可由四种不同的微状态解释,且这些微状态会以重复序列的形式出现。近期一项功能磁共振成像(fMRI)研究发现,这四种微状态分别与四个已知的功能系统相关,每个功能系统都会被特定的认知功能和感觉输入激活。本研究采用高密度脑电图技术,探究通过操控认知任务(连续减法任务与清醒静息状态)和视觉信息可获得性(睁眼与闭眼条件),能否改变微状态的空间和时间特性。
2025-08-28 23:06:00
506
原创 脑电图(EEG)拓扑结构的血氧水平依赖(BOLD)相关性揭示快速静息态网络动态变化
功能性磁共振成像(fMRI)的静息态功能连接研究表明,大脑会内在地组织成大规模功能网络,这些网络的血液动力学特征在约 10 秒内保持稳定。对自发性脑电图拓扑结构的空间分析也发现,大脑存在稳定全局状态(即所谓 “微状态”)的离散时期,但这种准稳定状态仅持续约 100 毫秒。为探究脑电图定义的快速波动微状态与功能性磁共振成像定义的缓慢振荡静息态之间的关系,我们让被试在扫描仪中闭眼静息,并记录其 64 通道脑电图。通过传统脑电图微状态分析,我们确定了在所有被试中占主导地位的四种典型脑电图拓扑结构。
2025-08-28 22:31:40
434
原创 EEG microstates are correlated with brain functional networks during slow-wave sleep慢波睡眠脑期微状态与脑功能网络
脑电(EEG)微状态在清醒状态下已得到广泛研究,并被描述为 “思维的原子”。以往的脑电研究发现,在静息状态下,不同年龄段的参与者普遍存在四种微状态,即微状态 A、B、C 和 D。采用同步脑电与功能磁共振成像(fMRI)的研究已证实,静息状态下脑电微状态与功能磁共振网络存在相关性。在非快速眼动(NREM)睡眠期间也发现了微状态的存在。慢波睡眠(SWS)被认为是恢复作用最强的睡眠阶段,与维持睡眠状态有关。然而,慢波睡眠期间脑电微状态与脑功能网络之间的关系尚未得到研究。
2025-08-28 17:45:59
709
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人