Stable Diffusion - 扩展插件 (Extensions) 功能的配置与使用

Img

Prompt:
(masterpiece, top quality, best quality, ((standing in centre)), ((1girl, black hair)), ((upper body, symmetrical composition)), ((wear yellow abstract patterns dress bold lines, geometric shapes)), (pure yellow abstract patterns background), ((studio light)) ((studio portrait)), emotional face, face front, extreme detailed
Negative prompt: (worst quality, low quality:2), monochrome, zombie,overexposure, watermark,text,bad anatomy,bad hand,extra hands,extra fingers,too many fingers,fused fingers,bad arm,distorted arm,extra arms,fused arms,extra legs,missing leg,disembodied leg,extra nipples, detached arm, liquid hand,inverted hand,disembodied limb, small breasts, loli, oversized head,extra body,completely nude, extra navel,easynegative,(hair between eyes),sketch, duplicate, ugly, huge eyes, text, logo, worst face
Steps: 50, Sampler: DDIM, CFG scale: 7, Seed: 2409945005, Face restoration: CodeFormer, Size: 768x512, Model hash: 86aa256dd5, Model: AWPortrait_v1.1, Denoising strength: 0.26, Hires upscale: 2, Hires upscaler: 4x-UltraSharp, Version: v1.4.0
Saved: 00034-2409945005.png

Stable Diffusion 是一种基于扩散模型的AI绘画技术,可以根据文本或图像生成高质量的图像,原理是通过不断去除噪音来逐渐恢复目标图像。Extension是一种扩展功能,可以提供更多的选项和操作性,例如改变风格、扩展画布、修复图像等,通常是由第三方开发者编写的 Python 脚本,可以通过 GitHub 或其他平台下载安装。

stable-diffusion 启动命令:

cd stable-diffusion-webui
conda deactivate
source venv/bin/activate
nohup python -u launch.py --port 9301 --xformers --theme dark > nohup.sd.out &
tail -f nohup.sd.out

1. 配置环境

配置页面为黑色主题,在启动时,增加参数 --theme dark ,即可。访问时,自动增加参数 __theme=dark

http://127.0.0.1:9302/?__theme=dark

推荐使用 扩展 - 可下载 进行安装,需要替换 扩展列表地址 为国内地址,有助于后续更新,再执行 加载扩展列表,即

  • 插件扩展的国内链接:https://gitee.com/akegarasu/sd-webui-extensions/raw/master/index.json
  • 参考:https://gitee.com/akegarasu/

即:

Img

建议直接修改工程:stable-diffusion-webui/modules/ui_extensions.py,替换插件源,
https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui-extensions/master/index.json
替换成 https://gitee.com/akegarasu/sd-webui-extensions/raw/master/index.json
或者 https://ghproxy.com/https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui-extensions/master/index.json

注意:在 GitHub 链接之前,加入 https://ghproxy.com/ 可有效提升下载速度,例如

https://ghproxy.com/https://github.com/pkuliyi2015/multidiffusion-upscaler-for-automatic1111.git

删除插件:直接进入扩展文件夹 table-diffusion-webui/extensions ,删除相应的目录,重启即可。

内置的 Extension:

Extension

2. 配置插件

待安装的 4 个插件:

  1. stable-diffusion-webui-localization-zh_Hans,汉化插件
  2. stable-diffusion-webui-images-browser,图库浏览器
  3. a1111-sd-webui-tagcomplete,提示词自动补全
  4. stable-diffusion-webui-wd14-tagger,提示词反推
2.1 汉化插件

stable-diffusion-webui-localization-zh_Hans,在 Available 页面搜索,取消 Location 勾选,搜索 zh,即可安装。

用户界面 (User Interface) - 本地化 (Location) 中,即可修改中文或英文 (None),点击 Apply Setting - Reload UI ,即可:

Location

2.2 图库浏览器

stable-diffusion-webui-images-browser,搜索 images browser,选择 图库浏览器

下载安装完成,重新启动,即可出现 图库浏览器 的Tab,点击 首页,即可刷新。点击图像,即可跳出生成信息,即:

Browser

支持删除图像:

Delete

2.3 提示词自动补全

a1111-sd-webui-tagcomplete,搜索 tag auto,选择 Booru tag autocompletion 即可。基于 Booru 词库进行替换。

安装重启之后,可以自动补全提示词,同时,也可避免提示词与模型之间的差异,即:

auto

也支持提升词替换:

Replace

输入 <e:<l: 自动搜索,已下载的 Embeddings 或 LoRA。

中文词库自动翻译:https://www.bilibili.com/video/BV1Bg4y1H7Tq/

  • 下载地址:http://www.123114514.xyz/WebUI/Tag/a1111-sd-webui-tagcomplete.zip

解压之后,在 a1111-sd-webui-tagcomplete/tags 目录之下,包括 csv 文件:

  • zh_cn_tr.csv
  • zh_cn.csv
  • color.json

复制 3 个文件,至 stable-diffusion-webui/extensions/a1111-sd-webui-tagcomplete/tags 中。

进入 设置 - 标签自动补全 插件的设置页面中,刷新

  • 标签文件名,设置为 zh_cn.csv,默认是 danbooru.csv
  • 翻译文件名,设置为 zh_cn_tr.csv,默认是 None

点击 保存设置,即可使用中文输入,自动翻译成英文,即:

ch

2.4 提示词自动反推

stable-diffusion-webui-wd14-tagger,搜索 Tagger,选择 WD 1.4 Tagger ,即可,点击安装,重新启动服务。

出现 WD 1.4 标签起 (Tagger),用于反推提示词,即:

Tagger

首次启动时,需要下载模型:

Loading wd14-vit-v2-git model file from SmilingWolf/wd-v1-4-vit-tagger-v2
Downloading model.onnx: 100%|██████| 373M/373M [00:34<00:00, 10.7MB/s]
Downloading (…)in/selected_tags.csv: 100%|█| 254k/254k [00:00<00:00, 4
Installing onnxruntime
Loaded wd14-vit-v2-git model from .cache/huggingface/hub/models--SmilingWolf--wd-v1-4-vit-tagger-v2/snapshots/1f3f3e8ae769634e31e1ef696df11ec37493e4f2/model.onnx

可以修改阈值,提升标签的细腻度,输入图像,即可生成提示词。发送到文生图,即 自动生成相似的图像。

3. 配置完成

扩展,已安装,即可显示当前所有插件,即:

Extension

Bug: 遇到 Bug “AssertionError: extension access disabled because of command line flags”

参考:[Bug]: AssertionError: extension access disabed because of commandline flags

原因是,启动服务时,不需要添加参数 --share--listen,即

cd stable-diffusion-webui
conda deactivate
source venv/bin/activate
nohup python -u launch.py --port 9301 --xformers --theme dark > nohup.sd.out &
tail -f nohup.sd.out

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程,模型插件,具体看下方。

需要的可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述
这份完整版的学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值