西雅图交通需求管理及策略规划(英)

西雅图交通局交通选择小组正制定2024 - 2030年战略计划,特别关注交通需求管理(TDM),旨在减少单人车辆依赖。此计划是此前CTR战略计划的延续,配合大流行后出行习惯改变,将重新审视TDM工作,确定改善项目优先事项并扩大服务受众。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

西雅图交通局(SDOT)交通选择小组正在制定一项战略计划,以指导我们未来5年(2024-2030年)的项目。SDOT的交通选择小组特别关注交通需求管理(TDM),其目的是通过支持人们步行、滚动、骑自行车、踏板车、乘坐公共交通工具以及使用其他工作安排(远程工作和弹性工作)来减少对单人车辆的依赖。

该计划是我们2019-2023年减少通勤行程(CTR)战略计划的成功实施,该战略计划的重点是利用我们长期的CTR计划实现更大的目标和目标。随着大流行后出行习惯的改变,西雅图市制定了西雅图交通计划,我们正在制定一项新的计划,以配合这些因素,重新审视我们应该如何实施TDM工作和产品,包括激励措施、教育、伙伴关系和政策。这一战略计划将确定改善现有项目的优先事项,并进一步扩大我们对新受众的服务,超越传统的朝九晚五通勤者,包括居民、游客等。

4ba28ca500e66f25c39ffc7d4f56c5be.jpeg

6504985468c98281db9e0041058f7a6d.jpeg

bf02dd5b222749f3413af4194ae0cf03.jpeg

c943ac808908bcc57a38c23968d5fdb0.jpeg

1959a2ee5c581efac9d815efadf05999.jpeg

abaea594b70a65724772e19e6fd3a19b.jpeg

e16fd6ad542df44952549355b770fb85.jpeg

626e63d5bfc8a689c685496b09158e45.jpeg

c7c691553d9bb31172e2bb44ce9bfbe2.jpeg

c2d8c4abc42bf8e0580fe199ed147e1e.jpeg

56a9014f81b42e9b2b7acd757ca58712.jpeg

3d27c1afca4f98fcf17db3dd39bdc692.jpeg

69b16d774a01491174ade151f2e87bcd.jpeg

ec8370c88cc32e3a7f646e0c498fcaed.jpeg

6841718587d039b11b06dc09ad23735b.jpeg

1ad80a7df8b3b23556e5cc2d061e4fbb.jpeg

31ad164ec01b993cb1346391151751be.jpeg

0e3046987907ce1b9c65f3554fb54464.jpeg

3125ce832c1df4e41a1a81142255d6fc.jpeg

ece0cf2484142d8bf39b533529d9c0ce.jpeg

eb34857caaa67fde468c34d5b54e7434.jpeg

df52fffa8c3133a0e58ed92c8acb12f6.jpeg

be5d7fd377f822d8a53e9dad8830ee48.jpeg

fa467f7ffc7c7df241c147f2473c9120.jpeg

6c457a2d0a0f4111df93ea84d5bada99.jpeg

e212bb6ee334e5b4b4245ade5cb66b38.jpeg

97a181b7b17b240c0e0c81d89e1cc59e.jpeg

170cffea6000eab38a3edc4edca57909.jpeg

b1a7771c16dcfb84654ea3e6384a93ac.jpeg

600842e29d1c7adc02ea297f2319cd66.jpeg

加入智能交通技术星球可获取更多资料。

基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明,该项目是个人毕设项目,答辩评审分达到98分,代码都经过调试测试,确保可以运行!欢迎下载使用,可用于小白学习、进阶。该资源主要针对计算机、通信、人工智能、自动化等相关专业的学生、老师或从业者下载使用,亦可作为期末课程设计、课程大作业、毕业设计等。项目整体具有较高的学习借鉴价值!基础能力强的可以在此基础上修改调整,以实现不同的功能。 基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指
### Seattle Traffic Data Datasets and APIs 对于获取与西雅图交通相关的数据集或API,可以考虑以下资源: 1. **City of Seattle Open Data Portal**: 这是一个开放的数据门户,提供了多种关于西雅图的城市数据,其中包括交通流量、交通事故以及公共交通等方面的信息[^3]。可以通过访问该网站并筛选类别来找到具体的交通相关数据。 2. **Washington State Department of Transportation (WSDOT)**: WSDOT 提供了一系列实时和历史交通数据服务,包括道路状况摄像头图像、旅行时间信息、高速公路传感器数据等。这些数据可通过其 API 接口获得,适合用于分析西雅图地区的交通模式和发展趋势[^4]。 下面是一段 Python 代码示例,展示如何通过 requests 库调用 RESTful Web Service 来获取来自 City of Seattle 的公开数据: ```python import requests def fetch_seattle_traffic_data(): url = 'https://data.seattle.gov/resource/...' response = requests.get(url) if response.status_code == 200: return response.json() else: raise Exception('Failed to load data') traffic_data = fetch_seattle_traffic_data() print(traffic_data[:5]) # Print first five records as sample output. ``` 为了进一步优化用户体验并减少延迟问题,在全球范围内分发静态内容时可采用 AWS S3 和 CloudFront 组合方案。其中 S3 负责存储原始文件,而 CloudFront 利用边缘位置缓存技术加速交付给最终用户的请求过程[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值