导 语:
为实现交管大数据对交通管理实战所提供的支撑作用,发现并解决路网中潜在的交通安全隐患。淄博市公安局交警支队依托数据魔方系统,建立了基于多维数据的交通要素全息画像及风险动态评估模型。通过该模型,淄博市公安交管部门对社会化综合治理精准赋能,如精准打击重点违法行为、精准化管理运输企业、对道路交通安全隐患进行精准化治理、精准化进行交通安全宣教、对社会化综合治理精准赋能等,有效提升了淄博市交通管理水平和事故防范能力,进一步保障了人民群众的生命财产安全,供大家借鉴参考。
近年来,随着经济社会向高质量发展快速转型,道路交通系统的规模不断扩大,截至2023年,我国机动车保有量达4.35亿辆,机动车驾驶人数达5.23亿,全国公路总里程约达535万公里。随着道路通车里程、机动车保有量以及驾驶人数量的持续增长,道路交通安全问题也日益严峻。针对交通安全问题,深入挖掘并整治隐藏的交通安全隐患是预防交通事故、保障交通安全的关键手段。然而,交通安全隐患呈现出面广量大、复杂多变的态势,给交通管理工作带来了巨大的压力与挑战。与此同时,科技兴警、大数据应用成为时代特色,使得大数据成为公安交通管理部门的重要力量,为交通管理实战应用提供了有力支撑。为了发现并解决路网中潜在的交通安全隐患,确保交通的顺畅运行,淄博市公安局交警支队对大量交通事故数据进行了深入复盘分析,发现每一起事故背后都存在与交通要素相关的风险隐患数据。为此,淄博市公安局交警支队依托数据魔方系统,建立了基于多维数据的交通要素全息画像及风险动态评估模型,对海量交通事故数据资源深入挖掘、智能比对,实现全量交通要素的全息画像、风险评估和风险隐患的精准分析、靶向整改,提升了淄博市交通管理水平和事故防范能力。
一、数据来源
(一)视频图片数据
视频数据主要来源于淄博市公安局PVIA(police video image application)平台和交警TPC(Infovision Traffic Police)平台,通过视频巡逻和回放,实现探头站岗和鼠标巡逻,为路面管控和事故追逃提供支撑。图片数据汇聚在视频大数据融合平台,利用视频图片解析技术和车脸、人脸特征解析算法对淄博市21万路视频抓拍的人员、车辆进行结构化描述。
(二)多维交管结构化数据
多维交管结构化数据涵盖了淄博市车管、交管、事故等十二项主要交通管理业务的85个应用系统数据资源,总计17.2亿余条。通过对业务逻辑的深入挖掘,本文找出所有与人、车、路、企、村居镇办等交通要素相关数据资源,梳理出8大类41项数据资源,为交通要素全息画像提供多维结构化数据支撑。
图1 数据资源架构图
二、交通要素全息画像及风险动态评估模型构建方法
(一)模型框架及流程图
以淄博市交警数据魔方系统为基础,构建了一个多维数据的交通要素全息画像及风险动态评估模型。通过多维结构化交管数据对交通要素赋分后进行归一化处理,结合构建的交通要素模型,合理划分出了关于交通要素的五色风险等级。基于这五色风险等级,进行了聚类分析,找出了具有关联性的交通要素,并对风险要素进行打标,最终实现对交通隐患的有效排查。模型构建及分析流程图详见图2。
图2 模型构建及分析流程图
(二)交通要素全息画像赋分
交通要素全息画像采用综合分析法,通过建立一套人、车、路、企、村居镇办的赋分标准体系,对要素基本信息、交通违法、交通事故等各类数据进行全维度加权赋分,从而形成各要素的风险积分。
1
显性因素画像赋分
显性因素画像主要依托于多维交管结构化数据,对交通要素如人、车、路、企等进行赋分和风险评估,对交通要素的详细赋分过程见下文。
◆ 人员画像赋分
人员画像赋分主要从驾驶证状态、交通违法、交通事故等5个角度出发,涵盖10个维度进行赋分。具体细节如下:
(1)
其中,为驾驶人的驾驶证类型系数;
为驾驶人的驾驶证的状态;为驾驶人的历史驾驶证状态;
为驾驶人的交通违法的类型、次数和危害;
代表交通事故的类型、次数和责任;
表示驾驶人名下机动车的数量和状态。
◆ 车辆画像赋分
车辆画像赋分主要从车辆状态、通行频次等4个角度出发,涵盖8个维度进行赋分。具体细节如下:
(2)
其中,为机动车类型系数;
为机动车状态;
代表机动车通行频次;
为车辆涉及的交通事故的类型、次数和责任;
为车辆设计的交通违法的类型、次数和危害。
◆ 道路画像赋分
道路画像赋分主要依托道路基础数据及视频结构化等多源数据,从路面违法、历史事故等4个角度、8个维度进行赋分。具体细节如下:
(3)
其中,为道路类型系数;
表示为道路秩序,包括右行和占道;
表示道路违法的高发点段;
为道路事故的高发点段;
表示为道路设备的隐患、道路设施和卡口数量。
◆ 企业画像赋分
道路画像赋分主要从运输企业驾驶人、机动车、风险评估等5个角度、20个维度进行赋分。具体细节如下:
(4)
其中,为企业类型系数;
为企业历史风险评估等级,包括中风险和高风险;
为企业驾驶人的状态和驾驶证分数;
为企业机动车的状态;
代表交通违法的类型、数量和产生的危害;
代表交通事故的类型、数量和责任。
◆ 村居镇办画像赋分
村居镇办画像赋分主要是从属地机动车、驾驶人、安全隐患等5个维度进行综合赋分。
(5)
其中,为村居近三年亡人事故发生系数;
为属地驾驶人的状态;
表示属地机动车的状态;
为周边道路的道路交通隐患;
中包含交通违法的类型、数量和危害;
代表交通事故的类型、数量和责任。
2
隐性因素画像赋分
隐性因素画像主要依赖于视频图像结构化数据的解析,通过对道路视频设备抓拍到的机动车、驾驶人的交通违法行为进行深入的画像分析,揭示交通违法行为背后的隐性特征和规律。具体包括如下几种隐性因素的画像:
◆ 依托公安部集成指挥平台预警数据及车辆轨迹抓拍数据,对假套牌、报废车等重点车辆通行规律进行动态画像;
◆ 依托车内人脸识别数据,对失格驾驶人通行规律进行动态画像;
◆ 依托淄博公安视频大数据融合平台全目标数据,将非标车违法载人、骑乘电动自行车不戴头盔等违法数据关联至人员画像档案。
(三)交通要素风险评估
1
离差标准化
在进行风险评估之前,考虑到多维交管结构化数据可能存在不同的计数单位或数据之间存在较大的差距。因此,对数据进行离差标准化操作变得尤为重要。离差标准化操作是将数据进行线性转化,将多维交管结构化数据映射到[0,1]区间内。这种处理方式消除了数据单位量级和数据较大或较小差异的影响,使得可以从纯数值方面进行分析。通过离差标准化操作,可以更准确地评估数据的潜在风险,为决策提供更有力的支持,离差标准化的公式如下:
(6)
其中,表示新生成的数据;
指原始数据;
指原数据中的最小值;
指原始数据中的最大值。
2
风险等级划分
为了更精确的评估交通要素的风险程度,利用离差标准化得到的归一化数据,对交通要素进行风险划分。根据具体的研究目的和数据特征对归一结果与隐患排查工作需求进行对比评估,风险积分高于300分和风险积分等于0分的数据进行统一赋值(不参与归一),以更加准确、直观展示相应交通要素的风险系数。
为了确保风险等级划分的准确性和实用性,需要综合考虑多方面因素,设立科学的风险阈值,这些阈值不仅基于历史数据,还考虑了专家意见以及实际的交通状况等多个维度。具体的划分细节如表1所示:
3
K-means聚类
MacQueen首次提出了K-means聚类算法,这是一种非监督学习的机器学习算法,通过迭代寻找最优聚类。本文利用该算法对划分的五色风险等级进行聚类分析,在聚类簇的基础上,深入挖掘数据,揭示各簇中交通要素之间的内在联系,从根本上解决潜在的交通安全隐患。该算法的具体实现过程如下所示。
步骤1 随机选取数据空间中的K个对象作为初始聚类中心;
步骤2 对于样本中的数据对象,根据它们与这些聚类中心的欧氏距离,按距离最近的准则将它们分到距离其最近的聚类中心所对应的类;
步骤3 更新聚类中心;
步骤4 重复步骤2和步骤3,直到聚类中心和目标函数的值不再改变,或者达到预设的迭代次数。
通过业务逻辑梳理、聚类算法结合方式建立一套交通要素标签体系,便于实战单位对交通要素风险隐患点快速精准的筛选、聚合,更加便捷精准的对交通要素采取查纠、推送、督办等管控措施。
图3 交通要素全息画像标签体系架构图
三、应用成效
淄博市公安局交警支队通过对淄博市所有与人、车、路、企、村居镇办等交通要素相关的8大类19项数据资源以及视频图像结构化解析数据建模,实现了对1267条路段、7849家企业、147万辆机动车、346万名交通参与者的画像积分和风险评估。目前已从全市层面,将驾驶人画像积分数据以及风险评估数据接入了数据魔方,区县交警大队、基层交警中队可以直接使用画像数据二次建模,实现了对辖区交通要素的精准分析,取得了显著成效。所获得的主要成效如下:
(1)重点违法的精准打击方面,在全息数据的支持下,淄博市公安局交警支队对重点交通违法发生的规律特点进行了深入分析,组织开展了多个波次精准查缉行动,查处假套牌、报废车等严重交通违法行为2万多起,查处故意污损遮挡号牌违法占全省查处总量63.5%。通过信息化研判手段,重点违法行为的查处占比达到了90%以上。
(2)交通宣教的精准滴灌方面,宣传部门借助人员画像数据,构建了一个事故易发高发群体专题数据库。根据人员风险特点,精准推送了宣教内容,包括12万条个性提示短信和4.2万份督办单。淄博市临淄区凤凰中队对辖区66个村居交通管理对象进行分类分析,研判出了6大类,共计6022名重点宣教对象,这些对象被精准推送到各村居和镇办,确保了对重点人员的有效宣教。这一举措显著降低了辖区内的死亡交通事故发生率,同比下降了57.14%。
(3)运输企业的精准管理方面,交警支队、大队、中队层级依托运输企业画像数据,实时掌握企业交通要素风险点,通过短信提示、上门教育、路面查纠等形式开展精准管理,高风险运输企业占比由7%下降至1.18%。
(4)道路交通安全隐患的精准查改方面,模型有效助力了各类安全隐患的查改工作。在人、车、路、企等方面,共计排查并整改了36000余条安全隐患。2023年淄博市依托道路全息画像数据,启动了国省道精治工程。在这次工程中,共查改了3400余处道路安全隐患,使得国省道的死亡交通事故总量大幅下降了46%,道路交通安全隐患得到了显著改善。
(5)社会化综合治理的精准赋能方面,依托基层管理网络和画像数据,淄博市实现了评估结果分类推送、综合施策,协同治理,打造了道路、企业、村居镇办等多维度交通安全治理体系,将重点违法记录纳入社会信用等级评价体系,形成了道路交通安全共建、共治、共享新格局。
四、结语
淄博市公安局交警支队运用数据魔方系统,创建了多维度的交通要素全息画像及风险动态评估模型。该模型对全量交通要素进行全息画像和风险评估,精准分析交通隐患并靶向整改,有效提升了全市交通管理水平和事故防范能力,有力保障了人民群众的生命财产安全。淄博市公安局交警支队今后将紧紧围绕精准治理的工作思路开展交通安全隐患大排查大整治,进一步清洗治理道路、事故基础数据,将保险理赔数据纳入人员、车辆画像维度,同时对全息画像建模数据结果二次建模分析,进一步实现对道路交通安全隐患的精准查改。
参考文献
[1]公安部网站. 全国机动车保有量达 4.17 亿辆,驾驶人超过 5 亿人[EB/OL]. [2023-01-11]. http://www.gov.cn/shuju/2023-01/11/content_5736278.htm.
[2]隋莉颖,陈智宏,倪顺江等.极端天气条件下交通隐患点识别方法及保障对策研究[J].公路交通科技(应用技术版),2015,11(09):232-234+269.
[3]张维. 基于GRU&Bi-LSTM的高速公路交通流预测模型[D].长安大学,2022.
[4]王琳琳. 交叉口交通事故损伤严重程度与影响因素分析[D].山东科技大学,2021.
[5]王艺霖,肖媛媛,左鹏飞等.基于改进聚类算法的交通事故多发点识别方法[J].计算机应用研究,2023,40(10):2993-2999.
[6]张道文,母尧尧,王朝健,刘奇,孙庆.城市道路交通事故特性及严重程度研究[J].安全与环境学报,2022,22(02):599-605.
(文 / 山东省淄博市公安局交警支队 郑钧升)
编校 | 张翼飞 何子豪
欢迎扫下面二维码加入智能交通技术群!
点击文后阅读原文,可获得下载资料的方法。
欢迎加入智能交通技术群!
联系方式:微信号18515441838