城市更新中的空间关系与顶层设计

并非正统的规划理论研究,只是依据长期从事交通规划所养成的思维习惯,以及所积累的不完备工作经验的一家之言,为城市更新理论研究和技术拓展提供“引玉之砖”。

伴随城镇建成区存量更新逐步成为国土空间规划和空间治理的主要实施模式,我国城镇化正在进入一个新的发展阶段。在今后很长时间内,如何通过广泛调动社会资源方式,借助“点-线-面”相结合的方式,实现城市整体空间上“强功能,调结构,惠民生”目标,将成为各级管理者和相关技术人员关注、思考和探索的重要问题。

城镇建成区存量更新的特殊性,决定了围绕更新项目生成、更新方案设计和更新项目实施的相关决策更加务实;多元主体参与的“价值-共识-协同”治理模式,将逐步取代政府主导下宏大叙事的“目标-愿景-行动”的管理模式。与此同时,城市空间要素之间的关联作用规律仍然发挥着不可忽视的作用,以有限投入“四两拨千斤”的发展诉求仍然是各级政府的工作期望。这就促使管理者和技术人员思考:如何将规划主导的空间治理模式与存量更新的实施方式有机结合,如何将计划机制的系统调控与市场机制的局域改造有机结合。

国土空间规划,不仅是一种空间资源的分配,而且是为了实现各种空间使用之间健康且可持续关系所作的公共政策安排,由此产生各种城镇空间改造行动之间的统筹要求。城市更新行动主体的多元性,决定了需要充分尊重具象利益群体合理诉求,在共识基础上拟定带有一定程度妥协的行动方案成为必须的操作方式。在此背景下,更新项目生成、更新方案设计中实现自顶向下的规划导引和自底向上的诉求响应之间的有机协同,成为协调全局-局部关系和利益的关键。

在现实工作中可以看到,城市更新过程中扮演承上启下重要角色的区级政府,往往偏重于强调“宜居安居”和“点-面结合”。相比于“宜居宜业”和“点-线-面结合”而言,反映出目前科层式管理体制所产生的某种程度局限性影响,这并不利于城市更新的系统功能实现。“宜居安居”并没有包含城市社会生活空间关键性的职住关联,难以完整形成有效的人力资源竞争力;“点-面结合”反映了一种行政范围视角限制和对于执行单元不全面理解,“点-线-面结合”则是能够突破行政区划限制,遵循空间联系规律和市场作用机制的空间系统思维,能够更好地把控空间中的成长单元(例如更新区域)、执行单元(例如控规管理单元)、毗邻单元、串接单元(例如轨道连接的空间功能单元)之间的关系。这也从一个侧面说明了在市级层面上加强城市更新规划导引的重要性。

不同于目前国土空间规划具有法定地位的层级化编制体系,城市更新规划导引应该主要关注空间功能和空间使用之间具有强耦合关系的客观要素组合,在已经形成的国土空间规划成果基础上,编制重点区域、重点廊道等城市更新规划管理导则,针对具体项目加强全局上“强功能,调结构“的引导,并帮助具体行动主体更好地评估局部场所空间的资源价值,促成具有市场价值和可持续性的更新方案,并组织相关更新项目在空间上的协同,增强系统效应。

针对城市更新规划导引的需求,为了更好地把握问题、评判价值、促成共识、减少矛盾、扩大效应,决策支持方法必须在理论与实践范畴内进行创新。其理论创新具有在学科边缘进行学科交叉的特点:城市规划专业领域内从位空间向流空间的拓展,与交通规划领域内从交通流向空间活动的拓展,形成空间关联分析的新方法;决策分析中通过执行单元(控规管理单元)向成长单元(更新单元),以及位空间视角的毗邻单元向流空间视角的关联单元拓展,对于项目生成、价值评估、方案拟定、行动协同等实现空间上的统筹。

顺应时代发展要求和国际大环境,构建具有全球竞争力的宜居宜业城市社会生活空间,应该成为城市更新的核心目标。

为了体现城市更新规划引导中的全局性价值导向,需要建立一种层级化的社会生活空间评价指标体系。事实上,目前已经广为认同的“十五分钟生活圈“就是微观层面上空间秩序的评价表述,在实际工作中确实发挥了有效的导向作用。但是仅依靠这种侧重居住环境的微观层面评价,不能完全解决城市更新过程中全局导向问题,需要在中观和宏观层面上针对社会生活空间建立能够表述”宜居宜业“愿景的评价指标。即中观层面(用以分析城市内部空间正义)上不同区域居民的社会机会(例如就业)和公共服务的可及性,以及宏观层面(用以分析城市在人力资源竞争上的比较优势)上居民生活时间分配(只有给城市居民更多的可自由支配时间,才能够不局限于”谋生“而是保障”生活“)的评价指标与方法。

作为决策支持技术,需要努力在城市更新系统策划和资源价值评估中导入定性与定量相结合的空间关联分析方法。

从定性分析角度来说,研究各种空间要素和空间使用之间的内在关联,识别空间上的相互依赖、相互制约/竞争关系,以及可能产生的社会人群和空间要素的迁移、空间区位变化,将在更新项目生成和更新方案拟定的系统统筹方面发挥重要作用。

从定量分析角度来说,表征空间集聚与流动特性的基于大数据空间活动分析方法,以及基于交通网络的空间可达性分析方法,为基于证据的组群决策提供了有价值的工具包,是在“价值-共识-协同”治理框架下推进工作的有效手段。

除此之外,在具体城市更新方案拟定中,还需要解决交流空间安排、空间流动有序性保障、获取公共交通服务便利性保障等问题,这些都是提升空间品质和引导空间行为转型不可或缺的要求,可以在方案设计中通过交通工程师的努力加以实现。

最后,建议在城市更新的“三师(责任规划师、责任建筑师、责任评估师)”组织框架内,加强空间关联分析技术分析人员的作用(可以导入擅长适应空间流动分析的交通分析师),以更好地完成跨界协同的任务。

参考文献

1. 杨东援等,国土空间规划背景下的交通大数据分析技术,同济大学出版社,2022年。

2.杨东援等,大数据与城市交通治理,同济大学出版社,2022年。

3.张晓春等,面向城市交通治理的大数据计算平台TransPaaS,同济大学出版社,2021年。

4.周涛等,城市交通大数据挖掘与应用实践,同济大学出版社,2022年。

5.王璞,基于移动通信数据的居民空间行为分析技术,同济大学出版社,2022年。

6.郑毅,证析——大数据与基于证据的决策,华夏出版社,2013年。

7.【美】雷金纳德.戈列奇等,空间行为的地理学,商务出版社,2013年。

8.柴彦威等,空间行为与行为空间,东南大学出版社,2014年。

附录,课题组交流讨论的PPT(有删减)

ee2fb7e4a0355f68f1a83c41f1af357e.jpeg

054c2d68b40d962405809f6765c4566d.jpeg

5db3c9cae7f981871b52dcb08b2c63cc.jpeg

ed6b192471cf342cb531b977d88d08e7.jpeg

dba8cfe0306785b9fe73548aaa07e3ff.jpeg

f9b119332a3c3863f4c54fe0b196141f.jpeg

31c088bf7b08d8d8a4a9abab668995e8.jpeg

2a0f93b7251efa0b43c2254c8c372b68.jpeg

16912072bf48fb2e2e56ae83aa1f2252.jpeg

e8b8016b9ebd1b5199a35ecf6fcc5ed5.jpeg

8fa3656be0d3ec10fa2aae85c992f41e.jpeg

d84f59fa4df6d5e2b25678f15efb71a8.jpeg

83d9aef9c13ba6b70769470e3d81005f.jpeg

7aa9d40abc1c124379c61426bd512d14.jpeg

1c835f1802afd7d85687ada9cfd4db86.jpeg

da3fc8506bf762e3076824b88416f31b.jpeg

8465d09546bce9a184216263fec64d22.jpeg

2f1242232370f27f0a0e7e443a4e5324.jpeg

f5c98eb77e4727fd13952daee87dae24.jpeg

c684058c47b1f7b270e4c757479f8316.jpeg

823bab0fc8eaa62125589cbd71ee74b2.jpeg

08a33cc75e6067e0e15da2165465fb7a.jpeg

b428ae9325c8e490e69d378a8e3e913d.jpeg

3999468e6db7a83b295e1e72147b5598.jpeg

02ffc2814c3855feedbeacaf9d241d24.jpeg

a9922ff751305d68ad33c8622ad0bd45.jpeg

00ee32af66cb5ae3c3b56957390bbf58.jpeg

ac2d1011b643d63e924f6b96004313c2.jpeg

703ad1bba766e7cef85f48343d2d0f77.jpeg

2fe9e059f31255e4c32fe4e913d6de21.jpeg

b6cb35d5bce79d55f965ab08c75c3699.jpeg

2d3d263ddb7adfb21af61cd520ab3974.jpeg

257bdcf01c6303568182fbcc85c99bbb.jpeg

34540708e13c90d3d102271483380525.jpeg

ac5d39a46bdf9fe885a7b2e19878424d.jpeg

d64d3ee0777a40f1025b9b3aabf1bc95.jpeg

01305f185698b4254e949b104ab539e9.jpeg

33436412c1d56ab8fae77f53a58e4e32.jpeg

89de36900ab97c31591c51e05a1bc26d.jpeg

331dfe4ed2267fe05963fce33fde98cb.jpeg

2d0d626896970e56d1918ac1ccf4125b.jpeg

730ba1b216c9d3d836bb6ab19bb72674.jpeg

d6ea46dd1d49af108e0a85dbfcecd99b.jpeg

ffeafb0d41ed6dd37ae34eb0f4224ad8.jpeg

6357f4727b804cd6872ac35375b40e97.jpeg

8c74a472c55ddfc32f8034a6eede281c.jpeg

0687b11586fded97bcff4b3ea1e8ea73.jpeg

2b8030c52df79eda0fa07541155f35ba.jpeg

7dc6a09931bdef72eb5d1f8d62a27cfa.jpeg

0a836dadf971925564071cbb0557b36f.jpeg

欢迎扫下面二维码加入智能交通技术群!

f763359441ecf5fd3643cd62cb1b5107.jpeg

扫描加入免费的「智慧城市之智慧交通」知识星球可了解更多行业资讯和资料。

141b210aa799f793276ba2aa6480b403.jpeg

欢迎加入智能交通技术群!

联系方式:微信号18515441838

内容概要:本文档《DeepSeek本地部署教程(非ollama)》详细介绍了DeepSeek大语言模型的本地部署程。首先明确了环境要求,包括Python 3.8以上版本、CUDA 11.7(针对GPU用户)、至少16GB RAM以及推荐的操作系统。接着阐述了安装步骤,如克隆代码仓库、创建虚拟环境、安装依赖等。随后讲解了模型下载方式,支持从Hugging Face平台下载不同版本的DeepSeek模型,如DeepSeek-7B、DeepSeek-67BDeepSeek-Coder。文档还提供了两种运行模型的方式:命令行运行使用API服务。此外,针对常见的问题,如CUDA相关错误、内存不足模型加载失败等,给出了详细的解决方案。最后,文档提出了性能优化建议,如使用量化技术减少内存占用、启用CUDA优化等,并强调了安全注意事项,包括定期更新模型依赖包、注意API访问权限控制等方面。; 适合人群:对大语言模型感兴趣的研究人员、开发者,特别是希望在本地环境中部署测试DeepSeek模型的技术人员。; 使用场景及目标:①帮助用户在本地环境中成功部署DeepSeek大语言模型;②解决部署过程中可能遇到的问题,如环境配置、模型下载运行时的常见错误;③提供性能优化建议,确保模型在不同硬件条件下的最佳表现;④指导用户进行安全配置,保障模型数据的安全性。; 阅读建议:在阅读本教程时,建议按照文档的步骤顺序逐步操作,同时结合实际情况调整环境配置参数设置。对于遇到的问题,可以参考常见问题解决部分提供的解决方案。此外,性能优化部分的内容有助于提高模型的运行效率,值得深入研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值