城市交通规划国家方案和地方实践

b13f0f463ee052e19dc849d856f120a6.jpeg

本报告来自不同国家的城市交通规划,各类案例越来越多地开始呼吁一种转变,从传统的以交通基础设施为主导的措施,转向以实现可持续为目标和以人为本的规划。本报告旨在帮助地方决策者和规划师,以更加有效和包容的方式,塑造城市交通和制定政策。同时,报告协助政策制定者和专家,在国家层面塑造先进的城市交通规划政策框架。

城市交通规划(UMP)作为规划工具和政策手段,引导城市地区及其周围环境的交通发展(通常适用于更大的交通区域)。国家城市交通规划的指导方针为地方当局指明方向。在一些国家,如巴西,法国和印度,城市交通规划的制定已经成为地方政府为地方交通项目申请国家资金的强制性要求。

点击文后阅读原文,可获得下载资料的方法。

35c222e1dc1e08c98f3ecaa41fb62912.jpeg

1c0bd58d0bece56e237c43ac86aa8828.jpeg

6002e9281f5223c616b9d28a4fe6fdf1.jpeg

e92bb9a8f81e0afc1eda14be86da7a3a.jpeg

959e8e14b22e14a4208e25c60059de4c.jpeg

5158f338b2703a08ecd1d6c2e68f20d5.jpeg

a250e34aab3724668663ad66c1c18513.jpeg

340a634efa7fa17752a8536f6a6f72f9.jpeg

3eea58ee701cb071364e4aff5420b909.jpeg

c999b4912bc923b52c15c2a2eb9fa845.jpeg

09d8a023bd5d8cb4bc89def2856953d8.jpeg

353481df7473149ec8647e88d0119bec.jpeg

3f3cc7217f4039afb288bb1ea11e3a76.jpeg

22a3e81d440281a691068e587f28a528.jpeg

d8d61f907dbcd3fd07f10697504c8beb.jpeg

251e06a9aba65892a377a7198ee1daca.jpeg

c01412565acbdc01203200c351fe267a.jpeg

4c00340ffca31410a0b5a2dbecc85139.jpeg

343a22761be6cd78a91a4f47e265404c.jpeg

ace8bbac2dcf881f3a2399a1915a5da6.jpeg

9c9a2438fbd58c2151afd3286d061fe7.jpeg

178fe93d9b0b617eab7fcee9a14fdd4f.jpeg

ab0ff900cbbd57e159f8a50295a81ea2.jpeg

d9e65d3427eecd990350e73b69ac6881.jpeg

6df8f3c27e6ada83b58cc5aa17efa9ba.jpeg

4148e4288993ca46c80e2358ee388a5d.jpeg

bbda93140e5d66fa61e572fd35317b5c.jpeg

d04032a25dcbcf20682e50cdbf890daa.jpeg

欢迎扫下面二维码加入智能交通技术群!

20c2300ee6ceca2069464cad6d3fa582.jpeg

点击文后阅读原文,可获得下载资料的方法。

adbabeea6fbacde61ae4115c49670186.png

欢迎加入智能交通技术群!

联系方式:微信号18515441838

数据集介绍:多类别动物目标检测数据集 一、基础信息 数据集名称:多类别动物目标检测数据集 图片数量: - 训练集:6,860张图片 - 验证集:1,960张图片 - 测试集:980张图片 总计:9,800张含动态场景的动物图像 分类类别: Alpaca(羊驼)、Camel(骆驼)、Fox(狐狸)、Lion(狮子)、Mouse(鼠类)、Ostrich(鸵鸟)、Pig(猪)、Rabbit(兔子)、Rhinoceros(犀牛)、Shark(鲨鱼)、Sheep(绵羊)、Snake(蛇)、Whale(鲸鱼) 标注格式: YOLO格式标注,包含目标检测所需的归一化坐标及类别索引,适用于YOLOv5/v7/v8等系列模型训练。 数据特性: 覆盖航拍、地面视角等多种拍摄角度,包含动态行为捕捉及群体/单体目标场景。 二、适用场景 野生动物监测系统: 支持构建无人机/红外相机AI识别系统,用于自然保护区动物种群追踪与生态研究。 智慧农业管理: 适用于畜牧养殖场动物行为分析、数量统计及健康监测等自动化管理场景。 生物多样性研究: 为陆地/海洋生物分布研究提供标注数据支撑,助力濒危物种保护项目。 教育科研应用: 可作为计算机视觉课程实践素材,支持目标检测、迁移学习等AI教学实验。 三、数据集优势 跨物种覆盖全面: 包含13类陆生/水生动物,涵盖家畜、野生动物及濒危物种,支持复杂场景下的模型泛化训练。 动态场景丰富: 捕捉动物运动、群体互动等真实行为模式,提升模型对非静态目标的检测鲁棒性。 标注体系规范: 严格遵循YOLO标注标准,提供精确的边界框定位,支持即插即用的模型训练流程。 多场景适配性: 数据来源涵盖航拍影像、地面监控等多维度视角,适用于农业、生态保护、科研等跨领域应用。 类别平衡优化: 通过分层抽样保证各类别数据分布合理性,避免长尾效应影响模型性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值