自动驾驶汽车(AVs)标志着交通运输的革命性转变,预计将重新定义道路安全、燃油效率和商业动态。然而,交叉路口仍然具有挑战性;它们是造成大量事故的原因。目前的学习方法往往忽视了与人类驾驶车辆(HDVs)和行人互动的复杂性。随着AV数量的增加,保持稳健的算法交互变得至关重要。探索多智能体强化学习(MARL),一种密切反映现实世界场景的技术。MARL有望在不受控制的十字路口改进自动驾驶决策。多智能体深度确定性策略梯度(madpg)被证明有助于提高安全性和舒适性决策。在培训过程中融入全球视角,使车辆在十字路口的安全性提高了40%,舒适性提高了20%。我们的研究与许多研究者强调全球经验的好处的发现一致。使用MARL有望在复杂环境中更好地导航,潜在地减少事故。全球经验加快了自动驾驶汽车的学习过程,确保了对不同条件和文化差异的适应能力。通过确保效率和乘客舒适度,这种方法可以增强公众对自动驾驶汽车的信任。将具有全球经验的MADDPG模型嵌入到自动驾驶中,是一种革命性的方法,可以促进更安全、更高效的交通环境。
本研究探讨了多智能体强化学习(MARL)的应用,以提高自动驾驶汽车(AVs)在非受控交叉口的决策、安全性和乘客舒适度。该研究旨在评估MARL在建模共享环境中交互的多个代理方面的潜力,反映自动驾驶汽车与多个参与者交互的真实情况。研究结果表明,使用具有全局经验的MARL方法训练的自动驾驶汽车比使用本地(个人)经验训练的自动驾驶汽车能更好地导航十字路口场景。这种能力是实现5级自动驾驶的关键先导,在5级自动驾驶中,车辆有望在所有条件下管理驾驶任务的各个方面。该研究有助于通过多智能体强化学习增强自动驾驶汽车技术的持续讨论,并为自动驾驶复杂训练方法的发展提供信息。
点击文后阅读原文,可获得下载资料的方法。
欢迎扫下面二维码加入智能交通技术群!
点击文后阅读原文,可获得下载资料的方法。
欢迎加入智能交通技术群!
联系方式:微信号18515441838