【KWDB 创作者计划】_深度学习篇---数据获取


文章目录


前言

深度学习竞赛(如Kaggle、天池等)和研究项目中,获取大量高质量数据是成功的关键因素之一。以下是系统化的数据获取方法和资源大全


一、公开数据集资源库

1. 综合型数据集平台

Kaggle Datasets (https://www.kaggle.com/datasets)

超过5万个公开数据集
涵盖计算机视觉、自然语言处理、时序数据等领域
特色:附带社区讨论和示例代码

Google Dataset Search (https://datasetsearch.research.google.com)

谷歌推出的数据集搜索引擎
索引超过2500万个数据集
支持按领域、格式、许可证等筛选

UCI Machine Learning Repository (https://archive.ics.uci.edu/ml)

最古老的机器学习数据集库之一
包含500+个经典数据集
适合教学和小规模实验

2. 计算机视觉专用

ImageNet (http://www.image-net.org)

1400万张标注图像,2万多个类别
年度ILSVRC比赛的基础数据集
需要学术用途注册

COCO Dataset (https://cocodataset.org)

对象检测、分割和字幕生成基准
33万张图像,250万个标注实例
提供丰富的API工具包

Open Images (https://storage.googleapis.com/openimages/web/index.html)

Google提供的900万张图像数据集
包含图像级标签、目标边界框和分割掩码

3. 自然语言处理专用

HuggingFace Datasets (https://huggingface.co/datasets)

提供2000+个NLP数据集
统一API接口,支持流式加载
包含GLUE、SQuAD等基准数据集

Common Crawl (https://commoncrawl.org)

每月抓取的数十亿网页数据
原始HTML、提取文本和元数据
适合预训练语言模型

Wikipedia Dumps (https://dumps.wikimedia.org)

多语言维基百科全量数据
包含文章历史、链接结构等
适合知识图谱构建

二、专业领域数据集

1. 医疗健康

MIMIC (https://mimic.mit.edu)

重症监护病房的去标识化数据
包含临床记录、生命体征等
需要伦理认证申请

CheXpert (https://stanfordmlgroup.github.io/competitions/chexpert)

22.4万张胸部X光片
14种病理学的多标签分类
斯坦福大学发布

2. 自动驾驶

Waymo Open Dataset (https://waymo.com/open)

包含高分辨率传感器数据
2000段驾驶场景,60万帧
3D边界框和轨迹标注

nuScenes (https://www.nuscenes.org)

1000个复杂驾驶场景
雷达、激光雷达和相机多模态数据
详细的3D物体标注

3. 遥感与地理空间

NASA EarthData (https://earthdata.nasa.gov)

卫星遥感数据综合门户
包含气候、地形、植被等数据
部分数据需专业工具处理

EuroSAT (https://github.com/phelber/eurosat)

2.7万张卫星图像
10种土地覆盖类型
基于Sentinel-2数据

三、数据生成与增强技术

1. 合成数据生成

Blender合成渲染

import bpy

# 设置场景和相机
bpy.ops.object.camera_add()
# 添加物体并设置材质
# 批量渲染并保存标注

使用Unity Perception (https://github.com/Unity-Technologies/com.unity.perception)

工业级合成数据生成工具
支持随机化参数和自动标注
导出COCO格式

2. 数据增强策略

Albumentations库 (图像增强)


                
<think>嗯,用户想了解AWS数据分析服务中的DAC功能或配置,但首先我需要确认DAC具体指的是什么。因为AWS的服务和缩写很多,可能存在不同的解释。DAC常见的有Data Analytics Connector、Data Access Control或者Dynamic Access Control等。但根据用户提到的ADS(可能指Amazon DataZone Analytics)或AWS数据分析服务,可能是指数据访问控制相关的配置。 首先,我需要检查AWS官方文档是否有明确提到的DAC术语。例如,AWS Glue中的Data Catalog可能有访问控制,或者Amazon Redshift的数据访问控制。另外,用户提到的引用内容中有supfilesrv和kwdb-commn,这些可能与特定的服务或端口配置相关,但不确定是否与AWS直接相关,可能是用户提供的引用有误或来自其他来源。 假设DAC指的是数据访问控制,那么在AWS中通常涉及IAM角色、策略、资源策略等。例如,配置S3存储桶的访问权限,或者Glue Data Catalog的元数据访问控制。如果是Amazon Redshift,可能需要设置行级安全或列级访问控制。此外,AWS Lake Formation也提供细粒度的数据访问控制,可能涉及DAC的配置步骤。 用户需要教程,所以应该分步骤说明如何配置,比如使用IAM策略、Lake Formation权限管理、Redshift的安全策略等。同时需要确保使用正确的中文术语,并引用相关AWS文档作为参考。可能还需要指出常见的配置错误或最佳实践,比如最小权限原则。 另外,用户的问题中可能存在的混淆点需要澄清,比如确认DAC的具体服务上下文,避免给出不准确的配置步骤。如果DAC在AWS中没有直接对应的服务,可能需要提示用户确认术语的正确性,或者提供相关服务的访问控制配置方法。</think>关于AWS数据分析服务中的DAC(数据访问控制)配置,以下是关键步骤和说明: ### 一、AWS数据访问控制核心概念 1. **DAC定义**:在AWS数据分析场景中,DAC通常指通过细粒度权限控制实现数据访问管理,主要涉及: - 身份与访问管理(IAM)策略 - 资源级权限配置 - 数据目录访问控制(如AWS Glue Data Catalog) - 数据库级权限(如Amazon Redshift/Athena) 2. **典型应用场景**: - 控制不同用户对S3数据存储桶的访问 - 限制对Glue数据表的元数据操作 - 实现Redshift列级/行级安全控制 ### 二、配置步骤示例(以S3+Glue场景为例) ```python # AWS CLI配置存储桶策略示例(阻止未授权访问) aws s3api put-bucket-policy --bucket my-analytics-bucket --policy '{ "Version": "2012-10-17", "Statement": [{ "Effect": "Deny", "Principal": "*", "Action": "s3:GetObject", "Resource": "arn:aws:s3:::my-analytics-bucket/*", "Condition": {"StringNotEquals": {"aws:PrincipalTag/data_access": "true"}} }] }' ``` ### 三、高级控制方法 1. **Lake Formation细粒度控制**: - 创建数据目录数据- 通过LF-Tags实现列级权限管理 ```sql GRANT SELECT (customer_id, order_date) ON TABLE sales_db.retail_table TO IAM_ROLE 'analyst-role'; ``` 2. **Redshift动态数据脱敏**: $$masking_policy = CREATE MASKING POLICY phone_mask AS (val varchar) RETURNS varchar -> CASE WHEN CURRENT_ROLE() = 'HR' THEN val ELSE '***-***-' || RIGHT(val,4) END;$$ ### 四、最佳实践建议 1. 遵循最小权限原则,使用ABAC(基于属性的访问控制)[^1] 2. 定期审计权限配置(通过AWS Config或IAM Access Analyzer) 3. 对敏感数据启用加密(SSE-S3/KMS)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值