智能体通信网络(ACN)白皮书(2024年) 中移智库 2024-6

aeb70cf29ae98ce72063569efacbacb7.jpeg

近年来,基于大模型的生成式AI技术发展迅速,AGI(通用人工智能)不再遥不可及。与此同时,基于大模型的AIAgent(即智能体)代表了AGI的前沿发展趋势和应用方向,AI智能体成为大模型落地商用的主流形式。AIAgent不但使得人人拥有虚拟智能体(如数字人、智能助理等)成为可能,也会将大量物理具身智能体(如人形机器人、机器狗、智能车、智能无人机等)推向商用。智能体将会是未来网络连接的“新公民”,掀起智能体经济热潮,将人类社会生活带入到人与智能体协同、智能体与智能体协作的新阶段、新常态。

面对智能体经济趋势,移动网络的职责与使命将大大拓展。移动网络的能力边界将从提供更广的网络覆盖、更高的连接带宽和更低的传输时延,拓展到随时随地让各类智能体互联互通,实现跨厂商/跨生态的智能体间信息交互与任务协作,利用网络内生A、感知、计算等能力为智能体赋智赋能,从而为人们的生活和工作在智能化体验方面带来质的飞跃。

点击文后阅读原文,可获得下载资料的方法。

3b35196fb5017939aa46615d23f6650c.jpeg

83e1c63e7b2a37122216f84686115c94.jpeg

86208b312efcfc6d5b189b7ffb5d0ad7.jpeg

a19455582e6fa466418ec39806219adf.jpeg

7f53865ed60dc461a99a0df4b39f37cd.jpeg

bf3e769e77013eb82dbbcd8246ccaf00.jpeg

1c89396bdbdfee3e6aa554fb94615700.jpeg

0d2612fc00f76ce92082b5b9fbbdd4e3.jpeg

20a9076ee7b58adcc435d8008cae9ca2.jpeg

9dea8c654b49a1fbdb3b7e4058b3e0ae.jpeg

fc00110cc97c94ebf281ec1ae13c2b55.jpeg

d29a6c9babcb792bc0de2af9f3b8c1e0.jpeg

92cbd4775b545d89ca6252d923da738f.jpeg

4cd0972a412f804443e945df04734542.jpeg

18edfb8917a8c9ba1c7bbb9131fd20f6.jpeg

cf884adcbf78c8a23c74ee53b2c39c2f.jpeg

163e860e7c3816cdb8652c184b968aba.jpeg

8ab5f9f22f71ab3e905f2a6ee9b10791.jpeg

5c1d3aca968162f991ae5d8dcf43afa8.jpeg

dcc9486a811851cda6ee64a8e4184969.jpeg

496924f60db0478d46e9ed8366e4a62d.jpeg

8d7cfb2c0817719d867892338bf67b9f.jpeg

点击文后阅读原文,可获得下载资料的方法。

7bab798bf01b1939cd6c956ca3352513.png

联系方式:微信号18515441838

【资源说明】 1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 本文介绍了基于QEM(Quadric Error Metrics,二次误差度量)的优化网格简化算法的C和C++实现源码及其相关文档。这一算法主要应用于计算机图形学领域,用于优化三维模型的多边形数量,使之在保持原有模型特征的前提下实现简化。简化的目的是为了提高渲染速度,减少计算资源消耗,以及便于网络传输等。 本项目的核心是网格简化算法的实现,而QEM作为该算法的核心,是一种衡量简化误差的数学方法。通过计算每个顶点的二次误差矩阵来评估简化操作的误差,并以此来指导网格简化过程。QEM算法因其高效性和准确性在计算机图形学中广泛应用,尤其在实时渲染和三维打印领域。 项目代码包含C和C++两种语言版本,这意味着它可以在多种开发环境中运行,增加了其适用范围。对于计算机相关专业的学生、教师和行业从业者来说,这个项目提供了丰富的学习和实践机会。无论是作为学习编程的入门材料,还是作为深入研究计算机图形学的项目,该项目都具有实用价值。 此外,项目包含的论文文档为理解网格简化算法提供了理论基础。论文详细介绍了QEM算法的原理、实施步骤以及与其他算法的对比分析。这不仅有助于加深对算法的理解,也为那些希望将算法应用于自己研究领域的人员提供了参考资料。 资源说明文档强调了项目的稳定性和可靠性,并鼓励用户在使用过程中提出问题或建议,以便不断地优化和完善项目。文档还提醒用户注意查看,以获取使用该项目的所有必要信息。 项目的文件名称列表中包含了加水印的论文文档、资源说明文件和实际的项目代码目录,后者位于名为Mesh-Simplification-master的目录下。用户可以将这些资源用于多种教学和研究目的,包括课程设计、毕业设计、项目立项演示等。 这个项目是一个宝贵的资源,它不仅提供了一个成熟的技术实现,而且为进一步的研究和学习提供了坚实的基础。它鼓励用户探索和扩展,以期在计算机图形学领域中取得更深入的研究成果。
内容概要:本文详细介绍了利用改进粒子群算法(PSO)进行混合储能系统(如电池与超级电容组合)容量优化的方法。文中首先指出了传统PSO易陷入局部最优的问题,并提出通过非线性衰减惯性权重、引入混沌因子和突变操作等方法来改进算法性能。随后,作者展示了具体的Python代码实现,包括粒子更新策略、适应度函数设计以及边界处理等方面的内容。适应度函数不仅考虑了设备的成本,还加入了对设备寿命和功率调节失败率的考量,确保优化结果的实际可行性。实验结果显示,在风光发电系统的应用场景中,改进后的PSO能够在较短时间内找到接近全局最优解的储能配置方案,相比传统方法降低了系统总成本并提高了循环寿命。 适合人群:从事电力系统、新能源技术研究的专业人士,尤其是对储能系统优化感兴趣的科研工作者和技术开发者。 使用场景及目标:适用于需要对混合储能系统进行容量优化的场合,旨在提高储能系统的经济效益和使用寿命,同时保证供电稳定性。通过学习本文提供的理论知识和代码实例,读者能够掌握改进粒子群算法的应用技巧,从而应用于实际工程项目中。 其他说明:文中提到的所有代码均为Python实现,且已在GitHub上提供完整的源代码链接(尽管文中给出的是虚拟地址)。此外,作者还计划将改进的PSO与其他优化算法相结合,进一步提升求解复杂问题的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值