2024人工智能在交通领域的机遇与挑战(英)

c82220243082d7b315e6f7d491444d78.jpeg

该文档是美国交通部高级研究项目局 - 基础设施(ARPA-I)于 2024 年 12 月发布的关于人工智能(AI)在交通领域机遇与挑战的报告。

  1. 背景与目的:2024 年 5 月,ARPA-I 依据总统行政命令发布了关于 AI 在交通领域的信息请求(RFI),旨在收集利益相关者对 AI 应用现状、机遇、挑战及相关问题的看法,以协助其履行职责并为未来研究和投资提供参考。

  2. RFI 回复情况概述:共收到 112 份回复,其中 95 份被认定有效。回复者涵盖学术机构、联邦资助研发中心、企业、劳工组织、非营利组织和公共部门等,多数来自企业。多数回复围绕安全、数字基础设施、气候与韧性等主题,且多涉及当前 AI 应用、机遇和挑战等关键问题。

  3. 当前 AI 应用

  • 自动驾驶车辆:AI 支持从辅助驾驶到全自动驾驶的一系列技术,如转向、停车和加速自动化,当前研究聚焦于提升车辆自动化水平。

  • 公交运营:计算机视觉用于公交专用道执法和车辆类型及流量估计,大型语言模型用于优化调度和预测性维护。

  • 道路交通运营与安全:预测分析和计算机视觉技术用于优化交通流量、减少拥堵和事故、检测道路危险和违规行为,部分项目利用天气数据和 AI 辅助军事基地交通决策。

  • 停车管理:智能停车系统提供实时车位信息,减少搜索时间和排放,部分城市用 AI 管理停车以缓解拥堵。

  • 道路资产监测:AI 结合传感器和计算机视觉监测道路资产状况,多模态语言模型助力基础设施维护,相比手动监测更高效。

  • 航空旅行与机场应用:涵盖无人机视觉应用、航班调度优化、机场内交通管理、安全监测和无人机配送等,航空业在探索 AI 与传统技术融合以提升安全性。

AI 机遇

  • 自动驾驶车辆:未来有望减少事故、缓解拥堵、提高物流效率和改善特殊人群出行,车辆间通信和国家模拟框架可促进其发展。

  • 计算机视觉与资产管理:AI 可实现交通资产视频分析自动化,实时监测资产状况和预测维护需求,提升基础设施管理效率。

  • 物流、规划与项目交付:AI 分析历史数据可改善项目时间和成本估算,激光雷达等技术提高施工安全和效率,助力交通规划应对环境挑战。

  • 安全改进:生成式 AI 辅助工程师解读数据,多种工具和技术可提升道路安全,如应急响应路径优化、剑桥顾问提出的 “安全监督者” 系统等。

  • 无障碍性:AI 技术为残疾人群体提供便利,如辅助出行规划、识别行人等,相关组织还提出针对视障和轮椅使用者的改进建议。

  • 网络安全机遇:部分企业提出利用 AI 增强交通系统网络安全,如车辆及基础设施的自主防御,但当前研究多关注系统自身安全而非异常检测。

  • 空中交通应用:AI 可减轻空中交通管制员工作负荷、优化流量管理,先进空中交通概念设想了 AI 在未来城市空中交通中的作用。

AI 挑战

  • 数据隐私与无偏性:数据量、多样性和管理面临挑战,需遵守隐私法并避免数据偏见,同时应对机器学习模型的概念漂移。

  • 监管考量:平衡创新与安全需要监管监督,随着 AI 发展需调整和制定法规,确保合理监管。

  • 网络安全挑战:AI 应用中的网络安全是关键问题,包括数据安全和 AI 软件及模型的安全风险,需开发新管理方法。

  • AI 保证:需构建通用信任框架评估和确保 AI 系统,软件公司致力于开发相关助手,信任框架涵盖可解释性、测试验证和数据可靠性等方面。

  • 与遗留系统集成:现有交通基础设施未考虑 AI 集成,数据质量和基础设施改造是难题,需改进数字基础设施。

  • 公众认知与信任:公众对 AI 缺乏了解,企业信息不透明导致信任问题,公众担忧工作替代,影响 AI 在交通领域的推广。

  • 劳动力替代与演变:自动化可能引发失业和再培训需求,安全关键领域的技术错误引发关注,企业与工会合作应对。

  • AI 模型可解释性、可解释性和评估:AI 模型难以理解和解释,缺乏统一框架影响评估和信任,导致公众怀疑。

  • 法律问题:交通法规复杂,AI 融入需谨慎考虑法律问题,包括责任界定和法规协调,DOT 需参与制定规则。

  • 偏见与公平问题:数据存在固有偏见,使用时需避免强化社会偏见,确保 AI 服务多样化人群,尤其关注弱势群体。

自主移动生态系统

  • 机遇:AI 可提升安全性、优化路线、增加特殊人群出行便利性、辅助车辆维护和道路系统升级。

  • 挑战:主要是政策和监管障碍,如数据隐私担忧、联邦指导缺失、AV 特定法规需求等。

  • 风险:包括网络安全、工作替代和安全风险,如系统被黑客攻击、自动化对人员和社区的影响、自动驾驶系统可靠性等。

其他考虑因素:涉及员工培训、AI 设计材料和结构、模拟改进、测试和研发投资等方面,如利用 AI 培训员工、开发智能材料、改进交通模拟、建设测试平台和举办创新竞赛等。

关键要点:AI 已在交通多领域应用并推动变革,但完全融入面临诸多挑战。受访者建议 ARPA-I 和 DOT 积极应对,在安全和创新方面保持沟通,投资相关技术和工具研发,推动 AI 可信应用,以实现交通系统的高效、安全和可持续发展。

14aceecc677d184635e3658cbcfb5524.jpeg

7a74ebc663ad51920d60c62b28517479.jpeg

120a561c170bf6d92b7d06294373389d.jpeg

967fb21c7abfef97563c9644c1e695b4.jpeg

4e00129fda89ad53fedbd025077d072f.jpeg

9df95c61fe6904c4744c99b4ee20975e.jpeg

71075bdc194c089510a205e8d78de896.jpeg

784e3a9832658122cd787de9d3ddf3f1.jpeg

43820b067538c883411db9ebd2ff4aa6.jpeg

f59556b6a5500ab798f091a142910db1.jpeg

7899afd71e361289d471423705a41fe3.jpeg

1607b554181105bb42f245d9b5ffc964.jpeg

32f575eb44f2ecb95628d0fc31538420.jpeg

dfe4914da21c5d63ee3ab5c0265550b0.jpeg

617d96179e17608c5419475083bea61a.jpeg

ab8522551a50a3e47dd7c92f376d345c.jpeg

395777dab5530a8bd5c19cf19271eb1e.jpeg

9b86f150bb319c8057f55a9c91ce0bca.jpeg

86791909ceb80ae81e69b54c97b2ab77.jpeg

611b47811ac3f755b0ee92b35774238c.jpeg

5a2392e0de3196f506965389eebdb5ba.jpeg

b0c789e56254c29e76b2da95296ac980.jpeg

2198c2abbe5da024e78a178e485db0f1.jpeg

e97c70cc06dfeea7ff238a0b0605542e.jpeg

2eb3fddcb9a16f8e81d9e195c49fe023.jpeg

68a9d1327ba74e9c1cfc50333a4e43cb.jpeg

b0b2972ad727fb3193d24b410dd91836.jpeg

fc739a48c74264b40c7a15c9ea84bce8.jpeg

800301648bc5b3c151080c2f33dbf05e.jpeg

3014b23faac3d89517f58e234dd228e1.jpeg

d174179fa4f07be159c8a27e98b35a53.jpeg

2025a8c08226989ddc60d93cd50e3813.jpeg

d9eea3e6684b3cadddfcad635c87c2ba.jpeg

4e1fa067aa7a955bced69eb8e1966a57.jpeg

2024人工智能在交通领域的机遇与挑战(英)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值