该文档是美国交通部高级研究项目局 - 基础设施(ARPA-I)于 2024 年 12 月发布的关于人工智能(AI)在交通领域机遇与挑战的报告。
-
背景与目的:2024 年 5 月,ARPA-I 依据总统行政命令发布了关于 AI 在交通领域的信息请求(RFI),旨在收集利益相关者对 AI 应用现状、机遇、挑战及相关问题的看法,以协助其履行职责并为未来研究和投资提供参考。
-
RFI 回复情况概述:共收到 112 份回复,其中 95 份被认定有效。回复者涵盖学术机构、联邦资助研发中心、企业、劳工组织、非营利组织和公共部门等,多数来自企业。多数回复围绕安全、数字基础设施、气候与韧性等主题,且多涉及当前 AI 应用、机遇和挑战等关键问题。
-
当前 AI 应用
-
自动驾驶车辆:AI 支持从辅助驾驶到全自动驾驶的一系列技术,如转向、停车和加速自动化,当前研究聚焦于提升车辆自动化水平。
-
公交运营:计算机视觉用于公交专用道执法和车辆类型及流量估计,大型语言模型用于优化调度和预测性维护。
-
道路交通运营与安全:预测分析和计算机视觉技术用于优化交通流量、减少拥堵和事故、检测道路危险和违规行为,部分项目利用天气数据和 AI 辅助军事基地交通决策。
-
停车管理:智能停车系统提供实时车位信息,减少搜索时间和排放,部分城市用 AI 管理停车以缓解拥堵。
-
道路资产监测:AI 结合传感器和计算机视觉监测道路资产状况,多模态语言模型助力基础设施维护,相比手动监测更高效。
-
航空旅行与机场应用:涵盖无人机视觉应用、航班调度优化、机场内交通管理、安全监测和无人机配送等,航空业在探索 AI 与传统技术融合以提升安全性。
AI 机遇
-
自动驾驶车辆:未来有望减少事故、缓解拥堵、提高物流效率和改善特殊人群出行,车辆间通信和国家模拟框架可促进其发展。
-
计算机视觉与资产管理:AI 可实现交通资产视频分析自动化,实时监测资产状况和预测维护需求,提升基础设施管理效率。
-
物流、规划与项目交付:AI 分析历史数据可改善项目时间和成本估算,激光雷达等技术提高施工安全和效率,助力交通规划应对环境挑战。
-
安全改进:生成式 AI 辅助工程师解读数据,多种工具和技术可提升道路安全,如应急响应路径优化、剑桥顾问提出的 “安全监督者” 系统等。
-
无障碍性:AI 技术为残疾人群体提供便利,如辅助出行规划、识别行人等,相关组织还提出针对视障和轮椅使用者的改进建议。
-
网络安全机遇:部分企业提出利用 AI 增强交通系统网络安全,如车辆及基础设施的自主防御,但当前研究多关注系统自身安全而非异常检测。
-
空中交通应用:AI 可减轻空中交通管制员工作负荷、优化流量管理,先进空中交通概念设想了 AI 在未来城市空中交通中的作用。
AI 挑战
-
数据隐私与无偏性:数据量、多样性和管理面临挑战,需遵守隐私法并避免数据偏见,同时应对机器学习模型的概念漂移。
-
监管考量:平衡创新与安全需要监管监督,随着 AI 发展需调整和制定法规,确保合理监管。
-
网络安全挑战:AI 应用中的网络安全是关键问题,包括数据安全和 AI 软件及模型的安全风险,需开发新管理方法。
-
AI 保证:需构建通用信任框架评估和确保 AI 系统,软件公司致力于开发相关助手,信任框架涵盖可解释性、测试验证和数据可靠性等方面。
-
与遗留系统集成:现有交通基础设施未考虑 AI 集成,数据质量和基础设施改造是难题,需改进数字基础设施。
-
公众认知与信任:公众对 AI 缺乏了解,企业信息不透明导致信任问题,公众担忧工作替代,影响 AI 在交通领域的推广。
-
劳动力替代与演变:自动化可能引发失业和再培训需求,安全关键领域的技术错误引发关注,企业与工会合作应对。
-
AI 模型可解释性、可解释性和评估:AI 模型难以理解和解释,缺乏统一框架影响评估和信任,导致公众怀疑。
-
法律问题:交通法规复杂,AI 融入需谨慎考虑法律问题,包括责任界定和法规协调,DOT 需参与制定规则。
-
偏见与公平问题:数据存在固有偏见,使用时需避免强化社会偏见,确保 AI 服务多样化人群,尤其关注弱势群体。
自主移动生态系统
-
机遇:AI 可提升安全性、优化路线、增加特殊人群出行便利性、辅助车辆维护和道路系统升级。
-
挑战:主要是政策和监管障碍,如数据隐私担忧、联邦指导缺失、AV 特定法规需求等。
-
风险:包括网络安全、工作替代和安全风险,如系统被黑客攻击、自动化对人员和社区的影响、自动驾驶系统可靠性等。
其他考虑因素:涉及员工培训、AI 设计材料和结构、模拟改进、测试和研发投资等方面,如利用 AI 培训员工、开发智能材料、改进交通模拟、建设测试平台和举办创新竞赛等。
关键要点:AI 已在交通多领域应用并推动变革,但完全融入面临诸多挑战。受访者建议 ARPA-I 和 DOT 积极应对,在安全和创新方面保持沟通,投资相关技术和工具研发,推动 AI 可信应用,以实现交通系统的高效、安全和可持续发展。