这篇报告聚焦 DeepSeek 大模型展开深入探讨,从其发展概况、技术原理,到使用技巧、内容创作应用等方面进行详细剖析,为读者全面了解 DeepSeek 提供了丰富信息。
DeepSeek 概述
-
发展历程:2023 年 7 月幻方量化团队成立 DeepSeek 公司开启大模型研发转型;11 月发布首个开源代码大模型 DeepSeek Coder;2024 年 5 月发布并开源 MoE 大模型 DeepSeek-V2 。
-
发展背景:幻方量化团队凭借量化交易积累的经验,在全球大语言模型受关注、中美技术竞争和芯片出口限制背景下,成立公司专注低成本、高性能模型研发,以满足中文语境 AI 需求。
-
战略定位与资金支持:专注人工智能基础技术研究,目标是实现 “通用智能”,幻方量化提供资金和技术保障。
-
核心功能与应用场景:涵盖个人学习、智能写作、办公、研究开发、企业应用、代码辅助、知识问答等多个领域,满足不同用户的多样需求。
深度思考模型原理
-
模型架构与技术特点:采用混合专家(MoE)架构,能针对不同任务选择合适专家模块,引入动态偏置调整机制,具备强大推理和逻辑分析能力。
-
训练方法:通过大规模无监督学习建立对世界的初步理解,再进行有监督学习提升性能和准确性,最后用强化学习根据用户反馈优化回答。
提升回答深度与趣味性的技巧
-
真诚提问法:让 DeepSeek 理解用户真实需求,不受固定模板限制,激发潜能,生成更优质回答。
-
公式化提问法:通过特定公式明确任务关键要素,提升交互效率,使回答更精准、有深度和趣味性。
让回答通俗易懂的方法:使用 “说人话” 指令简化专业术语、转化复杂概念,结合实例解释抽象概念,降低理解难度,增强趣味性。
优化回答逻辑的策略:运用反向 PUA 法,通过逻辑漏洞检测、多角度论证、挑战假设、要求复盘与完善等方式,提升回答的逻辑性和质量。
模仿助力内容创作的实践:可模仿多种风格进行内容创作,包括经典文学、现代流行文学、学术论文、新闻报道等风格,以及历史人物、文学角色、公众人物、网络红人等语气,满足不同创作需求。
深度思考指令的运用:加入批判性思考指令,从多角度分析问题、挑战假设、挖掘潜在问题;要求复盘多遍,逐步细化回答,确保逻辑连贯性,持续提升回答质量。
后台回复“250318”,可获得下载资料的方法。