DeepSeek华为云AI解决方案 2025

该文档围绕 DeepSeek 与华为云合作的 AI 解决方案展开,涵盖了 DeepSeek 的发展历程、技术优势、华为云部署方案以及丰富的应用场景,旨在展示其在 AI 领域的竞争力与商业价值。

DeepSeek 介绍

  • 发展历程:2023 年 5 月成立,持续开源,2024 年底发布产品引发全球关注。上线后日活用户、下载量和访问量增长迅速,在多个国家应用商店排名领先,期间还遭受过黑客攻击。

  • 技术优势:通过系统优化实现高性能,在数学和编程领域表现突出。如 DeepSeek - V3 训练成本低,仅 558 万美元,推理成本仅为 OpenAI o1 的 3% ,且支持模型蒸馏。技术创新包括绕过 CUDA 挖掘硬件潜力,采用 MOE、MLA 等技术,实现计算、通信优化以及训练和推理加速。

DeepSeek 华为云部署方案

  • 场景一:基于 ModelArts Lite/Standard 部署:面向腰部重点客户和模型服务提供商,提供 ModelArts Lite(裸金属服务器)和 ModelArts Standard(Console 平台)两种部署方式,可部署 DeepSeek - R1 和 DeepSeek - V3 全尺寸模型,按包月计费,32 卡起步。

  • 场景二:基于 ModelArts Studio 部署:服务于 AI ISV、创业公司和研究院等,提供开箱即用的 MaaS API 服务,支持按需和包月计费,可部署多种模型,包括不同蒸馏版本,根据模型不同卡数要求不同。

  • 场景三:基于云服务器私有化部署:针对开发者和企业,在 Flexus 云服务器 X 实例或 GPU 服务器上搭建推理系统,提供多种规格选择,支持按需和包月计费,可部署不同参数规模的蒸馏版模型。

DeepSeek 应用场景

  • 联网助手解决方案:基于 Flexus X 实例部署 Dify 工作流平台与 DeepSeek 构建,提升模型落地能力,具备联网搜索和知识库功能,可增强回答准确性,适用于多种客户。

  • 智能交互数字人解决方案:结合 DeepSeek、Flexus X 实例、Dify 工作流平台和 MetaStudio,实现数字人具备私域和外部知识,提升多轮对话能力,适用于零售、餐饮等多个行业。

  • 智能语音交互 / 智能终端解决方案:由 DeepSeek、Flexus X 实例、Dify 工作流平台和 SIS 语音交互服务构成,可用于智能语音助手和智能终端云底座,实现语音交互和智能决策,适用于电子终端、汽车、玩具等行业的厂商和 ISV。

部署指导

提供了不同场景下部署 DeepSeek 的详细指导文档链接,包括 ModelArts Lite 部署、MaaS 免费 tokens 部署、Flexus X 实例 / GPU 上部署蒸馏版本以及与 Dify 结合的相关部署指导。

DeepSeek华为云AI解决方案 2025

### 如何在不同平台上部署 DeepSeek #### 华为云上的 DeepSeek 部署方法 华为计算于2月4日宣布,潞晨科技携手昇腾共同发布了基于昇腾算力的 DeepSeek R1 系列推理API以及云镜像服务[^4]。这意味着,在华为云环境中部署DeepSeek变得更为便捷。 对于希望利用华为云资源运行DeepSeek的企业和个人开发者而言,可以遵循如下指南: - **获取预构建环境**:通过华为云市场下载由潞晨科技提供的官方支持的DeepSeek R1系列推理API及其配套的云镜像文件。 - **创建实例并配置网络访问权限**:启动新的虚拟机实例,并设置安全组规则允许必要的端口通信。 - **加载模型和服务**:上传训练好的DeepSeek模型至该实例内,并按照文档说明完成服务初始化工作。 - **测试接口功能**:确保一切正常运作之后,可以通过编写简单的客户端程序调用这些API来进行初步验证。 ```bash # 创建一个新的ECS实例 ecs_instance_id=$(openstack server create --image "deepseek-r1-image-id" \ --flavor m1.medium --wait) echo $ecs_instance_id ``` #### 火山引擎上的 DeepSeek 部署方案 尽管目前没有直接提及火山引擎关于DeepSeek的具体合作消息,考虑到其作为字节跳动旗下的云计算服务平台所具备的强大技术支持能力,预计未来也会推出相应的解决方案。现阶段建议关注官方公告渠道等待进一步通知;同时也可以考虑先行探索其他已知兼容框架下的实现路径。 不过,假设火山引擎提供了类似的集成选项,则可能的操作流程会类似于上述描述的过程——即寻找合适的镜像源、建立适合的工作站节点群集结构、安装依赖库组件等操作步骤。 #### 百度千帆中的 DeepSeek 实施策略 百度作为一个重要的互联网巨头,在人工智能领域有着深厚积累和技术储备。随着越来越多企业加入到这场围绕着DeepSeek展开的合作浪潮之中[^2],相信不久后就能见到更多具体措施出台。在此之前,用户或许可以从现有的开源项目或是社区贡献里找到灵感启发,尝试搭建自己的实验性质版本。 一旦有确切的信息公布出来,通常的做法将是: - 寻找官方推荐的最佳实践案例研究; - 利用平台特有的工具链简化整个过程; - 参考成功用户的反馈意见调整参数设定。 ```python import paddlehub as hub module = hub.Module(name="ernie_vilg_2.0") # 假设这是与DeepSeek相匹配的一个模块名 result = module.generate(text_prompts=["一张美丽的风景画"], max_length=512, num_return_sequences=3) print(result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值